科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知以为圆心的圆:及其上一点.
(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;
(2)设平行于的直线与圆相交于,两点,且,求直线的方程;
(3)设点满足:存在圆上的两点和,使得,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱柱中, , , 分别为棱的中点.
(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明.
(2)若侧面侧面,求直线与平面所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设a为实数,记函数f(x)=a + + 的最大值为g(a).
(1)设t= + ,求t的取值范围,并把f(x)表示为t的函数m(t);
(2)求g(a);
(3)试求满足g(a)=g( )的所有实数a.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在(﹣1,1)上的函数f(x)满足:对任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求证:函数f(x)是奇函数;
(Ⅱ)如果当x∈(﹣1,0]时,有f(x)<0,试判断f(x)在(﹣1,1)上的单调性,并用定义证明你的判断;
(Ⅲ)在(Ⅱ)的条件下,若a﹣8x+1>0对满足不等式f(x﹣ )+f( ﹣2x)<0的任意x恒成立,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2016年新高一学生入学后,为了了解新生学业水平,某区对新生进行了素质测查,随机抽取了50名学生的数学成绩(均低于100分),其相关数据统计如下:
分数段 | 频数 | 选择题≥24分 |
5 | 2 | |
10 | 4 | |
15 | 12 | |
10 | 6 | |
5 | 4 | |
5 | 5 |
(1)若全区高一新生有5000人,试估计成绩不低于60分的人数;
(2)根据表格数据试估计全区新生数学的平均成绩(同一分数段的数据取该区间的中点值作为代表,如区间的中点值为75);
(3)从成绩在中抽取选择题得分不低于24分的3名学生进行具体分析,求至少有2名学生成绩在内的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点在椭圆上,设分别为左顶点、上顶点、下顶点,且下顶点到直线的距离为.
(1)求椭圆的方程;
(2)如图所示,过点作斜率为的直线交椭圆于,交轴于点,若为中点,过作与直线垂直的直线,证明:对于任意的,直线恒过定点,并求出此定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com