科目: 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣2x.
(1)画出f(x)的简图,并求f(x)的解析式; ![]()
(2)利用图象讨论方程f(x)=k的根的情况.(只需写出结果,不要解答过程).
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
直角坐标系
中,直线
(
为参数),曲线
(
为参数),以该直角坐标系的原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的方程为
.
(1)分别求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)设直线
交曲线
于
两点,直线
交曲线
于
两点,求
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
是直线
与椭圆
的一个公共点,
分别为该椭圆的左右焦点,设
取得最小值时椭圆为
.
(1)求椭圆
的标准方程及离心率;
(2)已知
为椭圆
上关于
轴对称的两点,
是椭圆
上异于
的任意一点,直线
分别与
轴交于点
,试判断
是否为定值;如果为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量 | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:
,方程乙:
.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:
,
称为相应于点
的残差(也叫随机误差));
租用单车数量 | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 |
| 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 | |||
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
,
的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合A={y|y=log2x,x≥4},B={y|y=(
)x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请A片区房源的概率;
(2)申请的房源所在片区的个数的ξ分布列与期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设椭圆
:
的离心率为
,
分别为椭圆
的左、右顶点,
为右焦点,直线
与
的交点到
轴的距离为
,过点
作
轴的垂线
,
为
上异于点
的一点,以
为直径作圆
.
![]()
(1)求
的方程;
(2)若直线
与
的另一个交点为
,证明:直线
与圆
相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)对于一切实数x,y均有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0,则当x∈(0,
),不等式f(x)+2<logax恒成立时,实数a的取值范围是
查看答案和解析>>
科目: 来源: 题型:
【题目】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com