科目: 来源: 题型:
【题目】椭圆C: 的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列,记△的面积为S.
(1)求椭圆C的方程.
(2)试判断是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求S的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法中,正确的是 .
①任取x>0,均有3x>2x;
②当a>0,且a≠1时,有a3>a2;
③y=( )﹣x是减函数;
④函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
⑤若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
⑥y=x2﹣2|x|﹣3的递增区间为[1,+∞).
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线y=x2﹣6x+5与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x﹣y+a=0交于A,B两点,且CA⊥CB求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑, 平面, , ,三棱锥的四个顶点都在球的球面上,则球的表面积为( ).
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)在(1)的条件下,是否存在m∈R,使得f(m)=﹣a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,请说明理由;
(3)若对x1 , x2∈R,且x1<x2 , f(x1)≠f(x2),方程f(x)= [f(x1)+f(x2)]有两个不等实根,证明必有一个根属于(x1 , x2).
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(1-tanAtanC)=1.
(1)求B的大小;
(2)若b=,求△ABC面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com