科目: 来源: 题型:
【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=
,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点,例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点,若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是( )
A.[﹣1,1]
B.(0,2)
C.[﹣2,2]
D.(0,1)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的部分图象如图所示,下列说法正确的是( ) ![]()
A.f(x)的图象关于直线x=﹣
对称
B.函数f(x)在[﹣
,0]上单调递增
C.f(x)的图象关于点(﹣
,0)对称
D.将函数y=2sin(2x﹣
)的图象向左平移
个单位得到f(x)的图象
查看答案和解析>>
科目: 来源: 题型:
【题目】某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1﹣ABCD,其上是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD﹣A2B2C2D2 . ![]()
(1)证明:直线B1D1⊥平面ACC2A2;
(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,经过B(1,2)作两条互相垂直的直线l1和l2 , l1交y轴正半轴于点A,l2交x轴正半轴于点C. ![]()
(1)若A(0,1),求点C的坐标;
(2)试问是否总存在经过O,A,B,C四点的圆?若存在,求出半径最小的圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆O:x2+y2=4与x轴负半轴的交点为A,点P在直线l:
x+y﹣a=0上,过点P作圆O的切线,切点为T.
(1)若a=8,切点T(
,﹣1),求直线AP的方程;
(2)若PA=2PT,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数
,关于实数
的不等式
的解集为
.
(1)当
时,解关于
的不等式:
;
(2)是否存在实数
,使得关于
的函数
(
)的最小值为
?若存在,求实数
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
+
=1的左、右焦点分别为F1 , F2 , 直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线与l1的交点的轨迹为曲线C2 , 若点Q是C2上任意的一点,定点A(4,3),B(1,0),则|QA|+|QB|的最小值为( )
A.6
B.3 ![]()
C.4
D.5
查看答案和解析>>
科目: 来源: 题型:
【题目】某科研小组研究发现:一棵水果树的产量
(单位:百千克)与肥料费用(单位:百元)满足如下关系:
.此外,还需要投入其它成本(如施肥的人工费等)
百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为
(单位:百元).
(1)求
的函数关系式;
当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com