科目: 来源: 题型:
【题目】将三项式(x2+x+1)n展开,当n=1,2,3,…时,得到如下所示的展开式,如图所示的广义杨辉三角形: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
观察多项式系数之间的关系,可以仿照杨辉三角形构造如图所示的广义杨辉三角形,其构造方法:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(a+x)(x2+x+1)4的展开式中,x6项的系数为46,则实数a的值为 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不少于900人运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=4cosωxsin(ωx+
)+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列五个命题: ①函数
的一条对称轴是x=
;
②函数y=tanx的图象关于点(
,0)对称;
③正弦函数在第一象限为增函数;
④若
,则x1﹣x2=kπ,其中k∈Z;
⑤函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k的取值范围为(1,3).
以上五个命题中正确的有(填写所有正确命题的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】要得到函数y=3cosx的图象,只需将函数y=3sin(2x﹣
)的图象上所有点的( )
A.横坐标缩短到原来的
(纵坐标不变),所得图象再向左平移
个单位长度
B.横坐标缩短到原来的
(纵坐标不变),所得图象再向右平移
个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移
个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移
个单位长度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com