科目: 来源: 题型:
【题目】已知函数f(x)=alnx﹣x2+1.
(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时有2f(x)+xf′(x)>x2 , 则不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集为( )
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)
查看答案和解析>>
科目: 来源: 题型:
【题目】对于数列
,
,
,
,若满足
,则称数列
为“
数列”.
若存在一个正整数
,若数列
中存在连续的
项和该数列中另一个连续的
项恰好按次序对应相等,则称数列
是“
阶可重复数列”,
例如数列
因为
,
,
,
与
,
,
,
按次序对应相等,所以数列
是“
阶可重复数列”.
(I)分别判断下列数列
,
,
,
,
,
,
,
,
,
.是否是“
阶可重复数列”?如果是,请写出重复的这
项;
(II)若项数为
的数列
一定是 “
阶可重复数列”,则
的最小值是多少?说明理由;
(III)假设数列
不是“
阶可重复数列”,若在其最后一项
后再添加一项
或
,均可 使新数列是“
阶可重复数列”,且
,求数列
的最后一项
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是菱形,
,
平面
,
,
,
,
是
中点.
(I)求证:直线
平面
.
(II)求证:直线
平面
.
(III)在
上是否存在一点
,使得二面角
的大小为
,若存在,确定
的位置,若不存在,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当t∈[﹣2,0]时,求函数g(t)的解析式;
(3)设函数h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式
有解,若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ln(1+x)﹣
. (Ⅰ)若a=2,求f(x)在x=1处的切线方程;
(Ⅱ)若f(x)≥0对x∈(﹣1,+∞)恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是( ) ![]()
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com