科目: 来源: 题型:
【题目】已知函数在点处的切线为.
(1)求实数, 的值;
(2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由;
(3)若,求证: .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB= =AC=2,E,F分别为A1C1 , BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
(2)求证:C1F∥平面ABE.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆C焦点在y轴上,离心率为 ,上焦点到上顶点距离为2﹣ .
(1)求椭圆C的标准方程;
(2)直线l与椭圆C交与P,Q两点,O为坐标原点,△OPQ的面积S△OPQ=1,则| |2+| |2是否为定值,若是求出定值;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆: 过椭圆: ()的短轴端点, , 分别是圆与椭圆上任意两点,且线段长度的最大值为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作圆的一条切线交椭圆于, 两点,求的面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程是(为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.
(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;
(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1: (t为参数),C2: (θ为参数).
(1)化C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t= ,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com