科目: 来源: 题型:
【题目】已知函数
.任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当t∈[﹣2,0]时,求函数g(t)的解析式;
(3)设函数h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式
有解,若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=4sin2(
+
)sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化简f(x);
(2)常数ω>0,若函数y=f(ωx)在区间
上是增函数,求ω的取值范围;
(3)若函数g(x)=
在
的最大值为2,求实数a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,E是矩形ABCD中AD边上的点,F是CD上的点,AB=AE=
AD=4,现将△ABE沿BE边折至△PBE位置,并使平面PBE⊥平面BCDE,且平面PBE⊥平面PEF. ![]()
(1)求
的比值;
(2)求二面角E﹣PB﹣C的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)若cos
=
,
π<x<
π,求
的值. 【答案】解:由
π<x<
π,得
π<x+
<2π,
又cos
=
,∴sin
=﹣
;
∴cosx=cos
=cos
cos
+sin
sin
=﹣
,
从而sinx=﹣
,tanx=7;
故原式=
;
(1)已知函数f(x)=2
sinxcosx+2cos2x﹣1(x∈R),若f(x0)=
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+x2 .
(1)求x<0时,f(x)的解析式;
(2)问是否存在这样的非负数a,b,当x∈[a,b]时,f(x)的值域为[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某班学生喜爱体育运动是否与性别相关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱体育运动 | 不喜爱体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为 ![]()
(1)请将上面的列联表补充完整(不用写计算过程)
(2)能偶在犯错误的概率不超过0.005的前提下认为喜爱体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=
.其中n=a+b+c+d)
查看答案和解析>>
科目: 来源: 题型:
【题目】某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为
,二等品率为
;B型产品的一等品率为
,二等品率为
.生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元.设生产各件产品相互独立.
(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记X(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求X的分布列及期望值.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则14分钟后P点距地面的高度是米.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知侧棱垂直底面的三棱柱ABC﹣A1B1C1中,AC=3,AB=5,BC=4,点D是AB的中点. ![]()
(1)求证:AC⊥BC;
(2)求证:AC1∥平面CDB1 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com