相关习题
 0  258810  258818  258824  258828  258834  258836  258840  258846  258848  258854  258860  258864  258866  258870  258876  258878  258884  258888  258890  258894  258896  258900  258902  258904  258905  258906  258908  258909  258910  258912  258914  258918  258920  258924  258926  258930  258936  258938  258944  258948  258950  258954  258960  258966  258968  258974  258978  258980  258986  258990  258996  259004  266669 

科目: 来源: 题型:

【题目】已知函数 f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最小值,则函数g(x)=f( ﹣x)是( )
A.偶函数且它的图象关于点 (π,0)对称
B.奇函数且它的图象关于点 (π,0)对称
C.奇函数且它的图象关于点( . ,0)对称
D.偶函数且它的图象关于点( ,0)对称

查看答案和解析>>

科目: 来源: 题型:

【题目】x,y 满足约束条件 ,若 z=y﹣ax 取得最大值的最优解不唯一,则实数 a 的值为( )
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:

(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)将函数f(x)的图象向右平移 个单位长度后得到函数g(x)的图象,求函数g(x)在区间 上的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,
(Ⅰ)求函数f(x)在(-1,1)上的解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性;
(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?

查看答案和解析>>

科目: 来源: 题型:

【题目】的部分图象如图所示.

(1)求函数的解析式;

(2)将的图象向左平移个单位长度得到的图象,若图象的一个对称轴为,求的最小值;

(3)在第(2)问的前提下,求函数上的单调区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;
(2)从圆C外一点P(x1 , y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某港口水的深度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t).下面是某日水深的数据:

t/h

0

3

6

9

12

15

18

21

24

y/m

10

13

10

7

10

13

10

7

10

经长期观察,y=f(t)的曲线可以近似地看成函数的图象.一般情况下,船舶航行时,船底离海底的距离为5m或5m以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).

(1)求y与t满足的函数关系式;

(2)某船吃水深度(船底离水面的距离)为6.5m,如果该船希望在同—天内安全进出港,请问该船在什么时间段能够安全进港?它同一天内最多能在港内停留多少小时?(忽略进 出港所需的时间).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知首项为 的等比数列{an}不是递减数列,其前n项和为Sn (n∈N*),且S3+a3 , S5+a5 , S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)若实数a使得a>Sn+ 对任意n∈N*恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案