相关习题
 0  259095  259103  259109  259113  259119  259121  259125  259131  259133  259139  259145  259149  259151  259155  259161  259163  259169  259173  259175  259179  259181  259185  259187  259189  259190  259191  259193  259194  259195  259197  259199  259203  259205  259209  259211  259215  259221  259223  259229  259233  259235  259239  259245  259251  259253  259259  259263  259265  259271  259275  259281  259289  266669 

科目: 来源: 题型:

【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2,AC=BC,F 是AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知,

(1)求证:AD⊥平面BCE;

(2)求三棱锥A﹣CFD的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:

分组

等待时间(分钟)

人数

第一组

[0,5)

10

第二组

[5,10)

a

第三组

[10,15)

30

第四组

[15,20)

10


(1)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(2)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,且AC=BD,平面PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)在△PAD中,AP=2,AD=2 ,PD=4,三棱锥E﹣ACD的体积是 ,求二面角D﹣AE﹣C的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC平面PBC;

(2)若AC=1,PA=1,求圆心O到平面PBC的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】在120°的二面角α--β的两个面内分别有点A,B,A∈α,B∈β,A,B到棱l的距离AC,BD分别是2,4,且线段AB=10.

(1)求C,D间的距离;

(2)求直线AB与平面β所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA平面ABCD,E为PD的中点,F为AC和BD的交点.

(1)证明:PB平面AEC;

(2)证明:平面PAC平面PBD.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱是AA′,CC′的中点,过直线EF的平面分别与棱BB′,DD′交于M,N,设BM=x,x∈[0,1],给出以下四种说法:

(1)平面MENF平面BDD′B′;

(2)当且仅当x=时,四边形MENF的面积最小;

(3)四边形MENF周长L=f(x),x∈[0,1]是单调函数;

(4)四棱锥C′﹣MENF的体积V=h(x)为常函数,以上说法中正确的为( )

A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用表示.(把频率当作概率).

(1)假设,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

(2)假设数字的取值是随机的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

同步练习册答案