科目: 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图. ![]()
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】圆(x-3) 2+(y+4) 2=1关于直线x+y=0对称的圆的方程是( )
A. (x+3)2+(y-4)2=1
B. (x-4)2+(y+3)2=1
C. (x+4)2+(y-3)2=1
D. (x-3)2+(y-4)2=1
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是函数f(x)=msinωx﹣cosωx(m>0)的一条对称轴,且f(x)的最小正周期为π
(Ⅰ)求m值和f(x)的单调递增区间;
(Ⅱ)设角A,B,C为△ABC的三个内角,对应边分别为a,b,c,若f(B)=2,
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)设
为定义在R上的偶函数,当
时,
.
(1)求函数
在R上的解析式;
(2)在直角坐标系中画出函数
的图象;
(3)若方程
-k=0有四个解,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的一个焦点为
,离心率为
.点
为圆
上任意一点,
为坐标原点.
(1)求椭圆
的标准方程;
(2)设直线
经过点
且与椭圆
相切,
与圆
相交于另一点
,点
关于原点
的对称点为
,证明:直线
与椭圆
相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在多面体
中,底面
为正方形,四边形
是矩形,平面
平面
.
![]()
(1)求证:平面
平面
;
(2)若过直线
的一个平面与线段
和
分别相交于点
和
(点
与点
均不重合),求证:
;
(3)判断线段
上是否存在一点
,使得平面
平面
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有
(其中S△PAB、S△PCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有
=(其中VP﹣ABE、VP﹣CDF分别为四面体P﹣ABE、P﹣CDF的体积). ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱柱
中,
平面
,
,
,
为
的中点.
![]()
(1)求四棱锥
的体积;
(2)求证:
;
(3)判断线段
上是否存在一点
(与点
不重合),使得
四点共面? (结论不要求证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com