相关习题
 0  259193  259201  259207  259211  259217  259219  259223  259229  259231  259237  259243  259247  259249  259253  259259  259261  259267  259271  259273  259277  259279  259283  259285  259287  259288  259289  259291  259292  259293  259295  259297  259301  259303  259307  259309  259313  259319  259321  259327  259331  259333  259337  259343  259349  259351  259357  259361  259363  259369  259373  259379  259387  266669 

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情况如上:

所以,的单调递减区间是,单调递增区间是.

(Ⅱ)当,即时,函数上单调递增,

所以在区间上的最小值为.

,即时,

由(Ⅰ)知上单调递减,在上单调递增,

所以在区间上的最小值为.

,即时,函数上单调递减,

所以在区间上的最小值为.

综上,当时,的最小值为

时,的最小值为

时,的最小值为.

型】解答
束】
19

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

1)求的方程;

2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数y=f(x)在上是增函数,函数y=f(x+2)是偶函数,则( )

A. f(1)<f(2.5)<f(3.5) B. f(3.5)<f(1)<f(2.5)

C. f(3.5)<f(2.5)<f(1) D. f(2.5)<f(1)<f(3.5)

查看答案和解析>>

科目: 来源: 题型:

【题目】公差不为0的等差数列中,已知,其前项和的最大值为( )

A. 25 B. 26 C. 27 D. 28

【答案】B

【解析】设等差数列的公差为,

整理得

∴当时,

最大,且.选B.

点睛:求等差数列前n项和最值的常用方法:

①利用等差数列的单调性, 求出其正负转折项便可求得和的最值;

将等差数列的前n项和 (A、B为常数)看作关于n的二次函数,根据二次函数的性质求最值.

型】单选题
束】
9

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )

A. B. C. 90 D. 81

查看答案和解析>>

科目: 来源: 题型:

【题目】为了得到函数y=sin2x的图象,只需把函数y=sin(2x﹣ )的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]时恒成立,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数在区间上单调递减,则实数的取值范围是( )

A. B. C. D.

【答案】C

【解析】

∴函数的单调减区间为

又函数在区间上单调递减,

解得

实数的取值范围是C.

点睛已知函数在区间上的单调性求参数的方法

(1)利用导数求解,转化为导函数在该区间上大于等于零(或小于等于零)恒成立的问题求解,一般通过分离参数化为求函数的最值的问题

(2)先求出已知函数的单调区间,然后将问题转化为所给的区间是函数相应的单调区间的子集的问题处理

型】单选题
束】
7

【题目】,函数的图象向右平移个单位长度后与原图象重合,则的最小值是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若函数在定义域内为增函数,求实数的取值范围;

2)在(1)的条件下,若 ,求的极小值;

3)设 .若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某投资人欲将5百万元奖金投入甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入奖金的关系式分别为,其中为常数且.设对乙种产品投入奖金百万元,其中

1)当时,如何进行投资才能使得总收益最大;(总收益

2)银行为了吸储,考虑到投资人的收益,无论投资人奖金如何分配,要使得总收益不低于,求的取值范围.

查看答案和解析>>

同步练习册答案