科目: 来源: 题型:
【题目】设函数的定义域为,若存在非零实数满足对任意,均有,且,则称为上的高调函数. 如果定义域为的函数是奇函数,当时,,且为上的8高调函数,那么实数的取值范围为____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)的定义域为R,且对任意的x,y∈R有f(x+y)=f(x)+f(y)当时,,f(1)=1
(1)求f(0),f(3)的值;
(2)判断f(x)的单调性并证明;
(3)若f(4x-a)+f(6+2x+1)>2对任意x∈R恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆: 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 、是椭圆的右顶点与上顶点,直线与椭圆相交于、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数在处的切线经过点
(1)讨论函数的单调性;
(2)若不等式恒成立,求实数的取值范围.
【答案】(1)在单调递减;(2)
【解析】试题分析: (1)利用导数几何意义,求出切线方程,根据切线过点,求出函数的解析式; (2)由已知不等式分离出,得,令,求导得出 在 上为减函数,再求出的最小值,从而得出的范围.
试题解析:(1)
令∴
∴ 设切点为
代入
∴
∴
∴在单调递减
(2)恒成立
令
∴在单调递减
∵
∴
∴在恒大于0
∴
点睛: 本题主要考查了导数的几何意义以及导数的应用,包括求函数的单调性和最值,属于中档题. 注意第二问中的恒成立问题,等价转化为求的最小值,直接求的最小值比较复杂,所以先令,求出在 上的单调性,再求出的最小值,得到的范围.
【题型】解答题
【结束】
22
【题目】已知是椭圆的两个焦点, 为坐标原点,圆是以为直径的圆,一直线与圆相切并与椭圆交于不同的两点.
(1)求和关系式;
(2)若,求直线的方程;
(3)当,且满足时,求面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在R上的函数y=f(x)的图象关于点 成中心对称,对任意的实数x都有f(x)=﹣f(x+ ),且f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+f(3)+…+f(2014)的值为( )
A.2
B.1
C.﹣1
D.﹣2
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义域为R的偶函数,当时,f(x)=x2-2x
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象,并根据图象写出f(x)的单调区间.
(3)求使f(x)=1时的x的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数给出下列四个命题:
①c = 0时,是奇函数; ②时,方程只有一个实根;
③的图象关于点(0 , c)对称; ④方程至多3个实根.
其中正确的命题个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com