科目: 来源: 题型:
【题目】某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人.为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为 78 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知下表为“五点法”绘制函数
图象时的五个关键点的坐标(其中
).
|
|
|
|
|
|
| 0 | 2 | 0 |
| 0 |
(Ⅰ) 请写出函数
的最小正周期和解析式;
(Ⅱ) 求函数
的单调递增区间;
(Ⅲ) 求函数
在区间
上的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于函数
有以下四个命题:
①对于任意的
,都有
; ②函数
是偶函数;
③若
为一个非零有理数,则
对任意
恒成立;
④在
图象上存在三个点
,
,
,使得
为等边三角形.其中正确命题的序号是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
(b∈R).若存在x∈[
,2],使得f(x)+xf′(x)>0,则实数 b的取值范围是( )
A.(﹣∞,
)
B.(﹣∞,
)
C.(﹣∞,3)
D.(﹣∞,
)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
.
(1)若函数
在区间
上存在零点,求实数
的取值范围;
(2)当
时,若对任意的
,总存在
使
成立,求实数
的取值范围;
(3)若
的值域为区间
,是否存在常数
,使区间
的长度为
?若存在,求出
的值,若不存在,请说明理由.(柱:区间
的长度为
)
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入
(单位:万元)满足
,乙城市收益Q与投入
(单位:万元)满足
,设甲城市的投入为
(单位:万元),两个城市的总收益为
(单位:万元).
(1)当甲城市投资50万元时,求此时公司总收益;
(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】某市对高二学生的期末理科数学测试的数据统计显示,全市10000名学生的成绩服从正态分布
,现从甲校100分以上(含100分)的200份试卷中用系统抽样中等距抽样的方法抽取了20份试卷来分析(试卷编号为001,002,…,200),统计如下:
![]()
注:表中试卷编号![]()
(1)写出表中试卷得分为144分的试卷编号(写出具体数据即可);
(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲、乙两校这40份学生的试卷中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市排名前15名的人数记为
,求随机变量
的分布列和期望.
附:若随机变量X服从正态分布
则 ![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com