相关习题
 0  259514  259522  259528  259532  259538  259540  259544  259550  259552  259558  259564  259568  259570  259574  259580  259582  259588  259592  259594  259598  259600  259604  259606  259608  259609  259610  259612  259613  259614  259616  259618  259622  259624  259628  259630  259634  259640  259642  259648  259652  259654  259658  259664  259670  259672  259678  259682  259684  259690  259694  259700  259708  266669 

科目: 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知圆的参数方程为为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)求直线的普通方程和圆的极坐标方程;

(2)求直线与圆的交点的极坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知随机变量ξ的概率分布列为:

ξ

0

1

2

P

则Eξ= , Dξ=

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)已知的两个零点,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。

(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;

(2)令,若对任意都有恒成立,求的最大值

查看答案和解析>>

科目: 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某共享单车运营公司为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为元/辆和元/辆的两款车型可供选择,按规定每辆单车最多使用年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各辆进行科学模拟测试,得到两款单车使用寿命频数表见下表.

经测算,平均每辆单车每年可以带来收入元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年.

(1)分别估计两款车型使用寿命不低于年的概率;

(2)如果你是公司的负责人,以参加科学模拟测试的两款车型各辆单车产生利润的平均数为决策依据,你会选择采购哪款车型?

查看答案和解析>>

科目: 来源: 题型:

【题目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

查看答案和解析>>

科目: 来源: 题型:

【题目】在亚丁湾海域执行护航任务的中国海军“徐州”舰,在A处收到某商船在航行中发出求救信号后,立即测出该商船在方位角方位角(是从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角)为45°、距离A处为10 n mile的C处,并测得该船正沿方位角为105°的方向,以9 n mile/h的速度航行,“徐州”舰立即以21 n mile/h的速度航行前去营救.

(1)“徐州”舰最少需要多少时间才能靠近商船?

(2)在营救时间最少的前提下,“徐州”舰应按照怎样的航行方向前进?(角度精确到0.1°,时间精确到1min,参考数据:sin68.2°≈0.9286)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为(
A.﹣200
B.﹣100
C.0
D.﹣50

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,多面体中,平面,四边形是菱形.

(1)证明:平面平面

(2)若,设,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案