科目: 来源: 题型:
【题目】中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆O,其“优美函数“有无数个”;
②函数
可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是( )![]()
A.①③
B.①③④
C.②③
D.①④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知F2、F1是双曲线
=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.3
B.![]()
C.2
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】将函数f(x)=2cos2x的图象向右平移
个单位后得到函数g(x)的图象,若函数g(x)在区间[0,
]和[2a,
]上均单调递增,则实数a的取值范围是( )
A.[
,
]
B.[
,
]
C.[
,
]
D.[
,
]
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且f(x﹣
)=f(x+
)恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目: 来源: 题型:
【题目】f(x)是定义在R上的奇函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.
(1)求证:f(x)为奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】某商品要了解年广告费
(单位:万元)对年利润
(单位:万元)的影响,对近4年的年广告费
和年利润
数据作了初步整理,得到下面的表格:
广告费 | 2 | 3 | 4 | 5 |
年利润 | 26 | 39 | 49 | 54 |
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立
关于
的回归直线方程;
(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com