科目: 来源: 题型:
【题目】已知向量
=(sinx,﹣1),
=(2cosx,1).
(1)若
∥
,求tanx的值;
(2)若
⊥
,又x∈[π,2π],求sinx+cosx的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设
,
为两条不同的直线,
,
为两个不同的平面,给出下列命题:
①若
,
,则
;
②若
,
,则
;
③若
,
,
,则
;
④若
,
,则
与
所成的角和
与
所成的角相等.
其中正确命题的序号是( )
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
(
)的离心率是
,点
在短轴
上,且
。
(1)球椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
两点。是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一次函数
是
上的减函数,
,且 f [ f(x)]=16x-3.
(1)求
;
(2)若
在(-2,3)单调递增,求实数
的取值范围;
(3)当
时,
有最大值1,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加
元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费
元,未租出的车每辆每月需要维护费
元.
(1)当每辆车的月租金定为
元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数
的图象过点
,对任意
满足
,且有最小值为![]()
(1)求
的解析式;
(2)求函数
在区间[0,1]上的最小值,其中
;
(3)在区间[-1,3]上,
的图象恒在函数
的图象上方,试确定实数
的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设定义在(0,+∞)上的函数 f(x),对于任意正实数 a、b,都有 f(ab)=f(a)+f(b)﹣1,f(2)=0,且当 x>1 时,f(x)<1.
(1)求 f(1)及
的值;
(2)求证:f(x)在(0,+∞)上是减函数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
=(cosα,sinα),
=(cosβ,sinβ),0<β<α<π.
(1)若|
﹣
|=
,求证:
⊥
;
(2)设
=(0,1),若
+
=
,求α,β的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com