相关习题
 0  260411  260419  260425  260429  260435  260437  260441  260447  260449  260455  260461  260465  260467  260471  260477  260479  260485  260489  260491  260495  260497  260501  260503  260505  260506  260507  260509  260510  260511  260513  260515  260519  260521  260525  260527  260531  260537  260539  260545  260549  260551  260555  260561  260567  260569  260575  260579  260581  260587  260591  260597  260605  266669 

科目: 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求证:AC⊥A1B;
(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
7 8 7 9 5 4 9 10 7 4
9 5 7 8 7 6 8 6 7 7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,以频率作为概率,请依据上述数据估计,求甲在第11至
第13次射击中获得获得优秀的次数ξ的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设cn=anbn , 求{cn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,A,B,C的对边分别为a、b、c, ,△ABC的面积为
(Ⅰ)求c的值;
(Ⅱ)求cos(B﹣C)的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设f'(x)是函数f(x)的导数,f'(x)是函数f'(x)的导数,若方程f'(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数f(x)的拐点.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,
设函数g(x)=x3﹣3x2+4x+2,利用上述探究结果
计算: =

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一个整数x0使得f(x0)≤0,则a的取值范
围是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】将函数 的图象向右平移 个周期后,所得图象对应的函数为f(x),则函数f(x)的单
调递增区间(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】设 ,则对任意实数a、b,若a+b≥0则(
A.f(a)+f(b)≤0
B.f(a)+f(b)≥0
C.f(a)﹣f(b)≤0
D.f(a)﹣f(b)≥0

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)是定义在[m,n]上的函数,记F(x)=f(x)﹣(ax+b),|F(x)|的最大值为M(a,b).若存在m≤x1<x2<x3≤n,满足|F(x1)|=M(a,b),F(x2)=﹣F(x1).F(x3)=F(x1),则称一次函数y=ax+b是f(x)的“逼近函数”,此时的M(a,b)称为f(x)在[m,n]上的“逼近确界”.
(1)验证:y=4x﹣1是g(x)=2x2 , x∈[0,2]的“逼近函数”;
(2)已知f(x)= ,x∈[0,4],F(0)=F(4)=﹣M(a,b).若y=ax+b是f(x)的“逼近函数”,求a,b的值;
(3)已知f(x)= ,x∈[0,4]的逼近确界为 ,求证:对任意常数a,b,M(a,b)≥

查看答案和解析>>

科目: 来源: 题型:

【题目】数列{an}的前n项a1 , a2 , …,an(n∈N*)组成集合An={a1 , a2 , …,an},从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),例如:对于数列{2n﹣1},当n=1时,A1={1},T1=1;n=2时,A2={1,3},T1=1+3,T2=13;
(1)若集合An={1,3,5,…,2n﹣1},求当n=3时,T1 , T2 , T3的值;
(2)若集合An={1,3,7,…,2n﹣1},证明:n=k时集合Ak的Tm与n=k+1时集合Ak+1的Tm(为了以示区别,用Tm′表示)有关系式Tm′=(2k+1﹣1)Tm1+Tm , 其中m,k∈N*,2≤m≤k;
(3)对于(2)中集合An . 定义Sn=T1+T2+…+Tn , 求Sn(用n表示).

查看答案和解析>>

同步练习册答案