科目: 来源: 题型:
【题目】在等差数列{an}中,a1=3,其前n项和为Sn , 等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
(Ⅰ)求an与bn;
(Ⅱ)设数列{cn}满足cn=
,求{cn}的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2,直角梯形AA1C1C通过直角梯形AA1B1B以直线AA1为轴旋转得到,且使得平面AA1C1C⊥平面AA1B1B.点M为线段BC的中点,点P是线段BB1中点. (Ⅰ)求证:A1C1⊥AP;
(Ⅱ)求二面角P﹣AM﹣B的余弦值.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设方程(m+1)|ex﹣1|﹣1=0的两根分别为x1 , x2(x1<x2),方程|ex﹣1|﹣m=0的两根分别为x3 , x4(x3<x4).若m∈(0,
),则(x4+x1)﹣(x3+x2)的取值范围为( )
A.(﹣∞,0)
B.(﹣∞,ln
)
C.(ln
,0)
D.(﹣∞,﹣1)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线
﹣
=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为
,则p=( )
A.1
B.![]()
C.2
D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)写出曲线
的普通方程和极坐标方程;
(2)若直线
与曲线
相交于点
两点,且
,求证:
为定值,并求出这个定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已成椭圆
的离心率为
.其右顶点与上顶点的距离为
,过点
的直线
与椭圆
相交于
两点.
(1)求椭圆
的方程;
(2)设
是
中点,且
点的坐标为
,当
时,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.
(1)求某户居民用电费用
(单位:元)关于月用电量
(单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占80%,求
的值;![]()
(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com