相关习题
 0  260590  260598  260604  260608  260614  260616  260620  260626  260628  260634  260640  260644  260646  260650  260656  260658  260664  260668  260670  260674  260676  260680  260682  260684  260685  260686  260688  260689  260690  260692  260694  260698  260700  260704  260706  260710  260716  260718  260724  260728  260730  260734  260740  260746  260748  260754  260758  260760  260766  260770  260776  260784  266669 

科目: 来源: 题型:

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积S= accosB.
(1)求角B的大小;
(2)若a=2 ,点D在AB的延长线上,且AD=3,cos∠ADC= ,求b的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知F1 , F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1= ,∠F1PF2= ,则双曲线C2的离心率e2的值为(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数f(x)=sin(2x﹣ )的图象向左平移 个单位后,得到y=g(x)的图象,则下列说法错误的是(
A.y=g(x)的最小正周期为π
B.y=g(x)的图象关于直线x= 对称
C.y=g(x)在[﹣ ]上单调递增
D.y=g(x)的图象关于点( ,0)对称

查看答案和解析>>

科目: 来源: 题型:

【题目】十七世纪英国著名数学家、物理学家牛顿创立的求方程近似解的牛顿迭代法,相较于二分法更具优势,如图给出的是利用牛顿迭代法求方程x2=6的正的近似解的程序框图,若输入a=2,=0.02,则输出的结果为(
A.3
B.2.5
C.2.45
D.2.4495

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|
(1)若函数f(x)的值域为[2,+∞),求实数a的值
(2)若f(2﹣a)≥f(2),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),l: (t为参数)
(1)求曲线C的普通方程,l的直角坐标方程
(2)设l与C交于M,N两点,点P(﹣2,0),若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=2alnx+x2﹣(a+4)x+1(a为常数)
(1)若a>0,讨论f(x)的单调性;
(2)若对任意的 a∈(1, ),都存在 x0∈(3,4]使得不等式f(x0)+ln a+1>m(a﹣a2)+2a ln 成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的焦点为F1 , F2 , 离心率为 ,点P为其上动点,且三角形PF1F2的面积最大值为 ,O为坐标原点.
(1)求椭圆C的方程;
(2)若点M,N为C上的两个动点,求常数m,使 =m时,点O到直线MN的距离为定值,求这个定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=
(1)求证:DM⊥平面ABC;
(2)求二面角C﹣BM﹣D的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下2×2列联表:(单位:人).

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知在全部105人中随机抽取1人成绩是优秀的概率为
(1)请完成上面的2 x×2列联表,并根据表中数据判断,是否有95%的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为X,求X的分布列与期望. 附:K2=

P(K2≥k)

0.15

0.10

0.05

0.010

k

2.072

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案