相关习题
 0  260852  260860  260866  260870  260876  260878  260882  260888  260890  260896  260902  260906  260908  260912  260918  260920  260926  260930  260932  260936  260938  260942  260944  260946  260947  260948  260950  260951  260952  260954  260956  260960  260962  260966  260968  260972  260978  260980  260986  260990  260992  260996  261002  261008  261010  261016  261020  261022  261028  261032  261038  261046  266669 

科目: 来源: 题型:

【题目】如图,直三棱柱中,的中点,是等腰三角形,的中点,上一点.

I)若平面,求

II)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面四边形ABCD中,AB=8AD=5CD=A=D=

(Ⅰ)求△ABD的内切圆的半径;

(Ⅱ)求BC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数= .

(1)若函数处取得极值,求的值,并判断处取得极大值还是极小值.

(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数).

(1)若处取到极值,求的值;

(2)若上恒成立,求的取值范围;

(3)求证:当时, .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线的方程为 为常数).

(1)判断曲线的形状;

(2)设曲线分别与轴, 轴交于点 不同于原点),试判断的面积是否为定值?并证明你的判断;

(3)设直线 与曲线交于不同的两点 ,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来许多地市空气污染较为严重,现随机抽取某市一年(365天)内100天的空气质量指数()的监测数据,统计结果如表:

指数

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

4

13

18

30

20

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时,对企业没有造成经济损失;当在区间内时,对企业造成的经济损失与成直线模型(当指数为150时,造成的经济损失为1100元,当指数为200时,造成的经济损失为1400元);当指数大于300时,造成的经济损失为2000元. 

(1)试写出的表达式;

(2)试估计在本年内随机抽取1天,该天经济损失大于1100且不超过1700元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,这30天中有8天为严重污染,完成列联表,并判断是否有的把握认为该市本年度空气严重污染与供暖有关?

非严重污染

严重污染

合计

供暖季

非供暖季

合计

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体中, 为线段上的动点,则下列判断错误的是( )

A. 平面 B. 平面

C. D. 三棱锥的体积与点位置有关

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四个命题:

①将 三种个体按3:1:2的比例分层抽样调查,若抽取的个体为12个,则样本容量为30;

②一组数据1、2、3、4、5的平均数、中位数相同;

③甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲;

④统计的10个样本数据为95,105,114,116,120,120,122,125,130,134,则样本数据落在内的频率为0.4.

其中真命题为( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4—5: 不等式选讲

已知函数f(x) 的定义域为R.

()求实数m的取值范围;

()m的最大值为n,当正数ab满足 n时,求7a4b的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4—4:坐标系与参数方程选讲

在直角坐标系中,曲线C1的参数方程为(a为参数),以原点O为极点,

以x轴正半轴为极轴,建立极坐标系,曲 线C2的极坐标方程为

(1)求曲线C1的普通方程与曲线C2的直角坐标方程.

(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P坐标.

查看答案和解析>>

同步练习册答案