科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,且点
到椭圆
上任意一点的最大距离为3,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
、
两点,与椭圆相交于
、
,且
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某餐厅通过查阅了最近5次食品交易会参会人数
(万人)与餐厅所用原材料数量
(袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 | 13 | 9 | 8 | 10 | 12 |
原材料 | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出
关于
的线性回归方程
.
(2)已知购买原材料的费用
(元)与数量
(袋)的关系为
,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润
销售收入
原材料费用).
参考公式:
,
.
参考数据:
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,点
在倾斜角为
的直线
上,以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的方程为
.
(1)写出
的参数方程及
的直角坐标方程;
(2)设
与
相交于
两点,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量
分布在
内,且销售量
的分布频率满足: ![]()
(1)求
的值并估计销售量的平均数;
(2)若销售量大于等于80,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取6天,再从这6天中随机抽取3天进行统计,求这3天不都来自同一组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,已知直线
:
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设点
的极坐标为
,直线
与曲线
的交点为
,
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,
,
分别为椭圆的上顶点和右焦点,
的面积为
,直线
与椭圆交于另一个点
,线段
的中点为
.
(1)求直线
的斜率;
(2)设平行于
的直线
与椭圆交于不同的两点
,
,且与直线
交于点
,求证:存在常数
,使得
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过
站的地铁票价如下表:
乘坐站数 |
|
|
|
票价(元) |
|
|
|
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过
站.甲、乙乘坐不超过
站的概率分别为
,
;甲、乙乘坐超过
站的概率分别为
,
.
(1)求甲、乙两人付费相同的概率;
(2)设甲、乙两人所付费用之和为随机变量
,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com