科目: 来源: 题型:
【题目】在四棱锥PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一点.
(Ⅰ)证明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥AEBC的体积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的内角A, B, C的对边分别为a, b, c,且
.
(Ⅰ)求角C的大小;
(Ⅱ)设角A的平分线交BC于D,且AD=
,若b=
,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:
①AF⊥GC;
②BD与GC成异面直线且夹角为60;
③BD∥MN;
④BG与平面ABCD所成的角为45.
其中正确的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,以原点
为极点,
轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线
,直线
.
(1)将曲线
上所有点的横坐标、纵坐标分别伸长为原来的2倍、
倍后得到曲线
,请写出直线
,和曲线
的直角坐标方程;
(2)若直线
经过点
且
,
与曲线
交于点
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数![]()
(1)若不等式
恒成立,则实数
的取值范围;
(2)在(1)中,
取最小值时,设函数
.若函数
在区间
上恰有两个零点,求实数
的取值范围;
(3)证明不等式:
(
且
).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
,其焦距为2,离心率为![]()
(1)求椭圆
的方程;
(2)设椭圆的右焦点为
,
为
轴上一点,满足
,过点
作斜率不为0的直线
交椭圆于
两点,求
面积
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】将圆
上每个点的横坐标变为原来的4倍,纵坐标变为原来的3倍,得曲线
,以坐标原点为极点,
轴的非负轴分别交于
半轴为极轴建立极坐标系,直线
的极坐标方程为:
,且直线
在直角坐标系中与
轴分别交于
两点.
(1)写出曲线
的参数方程,直线
的普通方程;
(2)问在曲线
上是否存在点
,使得
的面积
,若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com