相关习题
 0  261035  261043  261049  261053  261059  261061  261065  261071  261073  261079  261085  261089  261091  261095  261101  261103  261109  261113  261115  261119  261121  261125  261127  261129  261130  261131  261133  261134  261135  261137  261139  261143  261145  261149  261151  261155  261161  261163  261169  261173  261175  261179  261185  261191  261193  261199  261203  261205  261211  261215  261221  261229  266669 

科目: 来源: 题型:

【题目】已知函数 .

Ia=2时,求曲线y = 在点(0f(0))处的切线方程;

II)求函数在区间[0 , e -1]上的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是边长为2的菱形,∠ABC60°为正三角形且侧面PAB底面ABCD 为线段的中点, 在线段.

I是线段的中点时求证:PB // 平面ACM

II求证:

III)是否存在点,使二面角的大小为60°,若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

(Ⅰ)从甲大学中随机选出一名学生试估计其“爱好”中华诗词的概率;

()从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望

()试判断选出的这两组学生每天学习“中华诗词”时间的平均值的大小,及方差的大小.(只需写出结论)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C ,圆 的圆心到直线的距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线与圆相切,且与椭圆C相交于两点,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠ABC60°为正三角形,且侧面PAB底面ABCD. EM分别为线段ABPD的中点.

(I)求证:PE⊥平面ABCD

II求证:PB//平面ACM

(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某大学社团为调查大学生对于“中华诗词”的喜好,在该校随机抽取了40名学生,记录他们每天学习“中华诗词”的时间并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

学习时间

(分钟/天)

等级

一般

爱好

痴迷

()的值

(Ⅱ) 从该大学的学生中随机选出一人,试估计其“爱好”中华诗词的概率

(Ⅲ) 假设同组中的每个数据用该组区间的右端点值代替,试估计样本中40名学生每人每天学习“中华诗词”的时间

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点 , 是直线上任意一点,以为焦点的椭圆过点,记椭圆离心率关于的函数为,那么下列结论正确的是

A. 一一对应 B. 函数是增函数

C. 函数无最小值,有最大值 D. 函数有最小值,无最大值

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的极坐标方程是以极点为原点,极轴为轴的正半轴建立极坐标系,曲线的参数方程为为参数.

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)设为曲线上任意一点,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数已知曲线处的切线的方程为.

1)求的取值范围;

(2)当时, 的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的焦点的坐标为 的坐标为且经过点 .

1)求椭圆的方程;

(2)设过的直线与椭圆交于两不同点,在椭圆上是否存在一点使四边形为平行四边形?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案