科目: 来源: 题型:
【题目】已知椭圆
+
=1(a>b>0)上的点P到左,右两焦点F1,F2的距离之和为2
,离心率为
.
(1)求椭圆的标准方程;
(2)过右焦点F2的直线l交椭圆于A,B两点,若y轴上一点M(0,
)满足|MA|=|MB|,求直线l的斜率k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(限定
).
(1)写出曲线
的极坐标方程,并求
与
交点的极坐标;
(2)射线
与曲线
与
分别交于点
(
异于原点),求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,圆C的参数方程
(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρ(sinθ+
)=3
,射线OM:θ=
与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,
上的动点
到两焦点的距离之和为4,当点
运动到椭圆
的上顶点时,直线
恰与以原点
为圆心,以椭圆
的离心率为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左右顶点分别为
,若
交直线
于
两点.问以
为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为研究某种图书每册的成本费
(元)与印刷数
(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.
![]()
![]()
表中
,
.
(1)根据散点图判断:
与
哪一个更适宜作为每册成本费
(元)与印刷数
(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少千册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com