相关习题
 0  261077  261085  261091  261095  261101  261103  261107  261113  261115  261121  261127  261131  261133  261137  261143  261145  261151  261155  261157  261161  261163  261167  261169  261171  261172  261173  261175  261176  261177  261179  261181  261185  261187  261191  261193  261197  261203  261205  261211  261215  261217  261221  261227  261233  261235  261241  261245  261247  261253  261257  261263  261271  266669 

科目: 来源: 题型:

【题目】已知两圆的圆心分别为,P为一个动点,且直线的斜率之积为.

(Ⅰ)求动点P的轨迹M的方程;

(Ⅱ)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C、D,使得?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在等腰中, ,腰长为 分别是边的中点,将沿翻折,得到四棱锥,且为棱中点,

(Ⅰ)求证: 平面

(Ⅱ)在线段上是否存在一点,使得平面?若存在,求二面角的余弦值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高中生调查了当地某小区的50户居民由于台风造成的经济损失,将收集的数据分成三组,并作出如下频率分布直方图:

1)在直方图的经济损失分组中,以各组的区间中点值代表该组的各个值,并以经济损失落入该区间的频率作为经济损失取该区间中点值的概率(例如:经济损失则取,且的概率等于经济损失落入的频率)。现从当地的居民中随机抽出2户进行捐款援助,设抽出的2户的经济损失的和为,求的分布列和数学期望.

2)台风后居委会号召小区居民为台风重灾区捐款,此高中生调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

30

捐款不超过500元

6

合计

附:临界值表参考公式:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在表中,如何设计甲、乙两种货物应各托运的箱数可以获得最大利润,最大利润是多少?

货物

体积

重量

利润百元

5

2

20

4

5

10

托运限制

24

13

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).

(1)写出曲线的极坐标方程,并求交点的极坐标;

(2)射线与曲线分别交于点异于原点),求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形, 为等边三角形, 分别是 的中点, .

(Ⅰ)求证:平面平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数是定义域为的奇函数,当时,

)求出函数上的解析式;

)画出函数的图象,并根据图象直接写出的单调区间;

)求使时的的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题共14分)如图,在三棱锥中, 底面

,点分别在棱上,且)求证: 平面;()当的中点时,求与平面所成的角的大小;()是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数有两个极值点 ).

(1)求实数的取值范围;

(2)设,若函数的两个极值点恰为函数的两个零点,当时,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左右焦点分别为上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左右顶点分别为,若交直线两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案