相关习题
 0  261194  261202  261208  261212  261218  261220  261224  261230  261232  261238  261244  261248  261250  261254  261260  261262  261268  261272  261274  261278  261280  261284  261286  261288  261289  261290  261292  261293  261294  261296  261298  261302  261304  261308  261310  261314  261320  261322  261328  261332  261334  261338  261344  261350  261352  261358  261362  261364  261370  261374  261380  261388  266669 

科目: 来源: 题型:

【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后yx的函数图象,给出下列四种说法,①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是(  )

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目: 来源: 题型:

【题目】某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.

(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;

(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】是指大气中空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世界卫生组织设定的最宽限值,即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某城市环保局从该市市区2017年上半年每天的监测数据中随机抽取18天的数据作为样本,将监测值绘制成茎叶图如下图所示(十位为茎,个位为叶).

(1)求这18个数据中超标数据的平均数与方差;

(2)在空气质量为一级的数据中,随机抽取2个数据,求其中恰有一个为日均值小于30微克/立方米的数据的概率;

(3)以这天的日均值来估计一年的空气质量情况,则一年(按天计算)中约有多少天的空气质量超标.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中,真命题的序号是__________

①“若,则”的否命题;

②“,函数在定义域内单调递增”的否定;

③“”是“”的必要条件;

④函数与函数的图象关于直线对称.

查看答案和解析>>

科目: 来源: 题型:

【题目】实数对满足不等式组则目标函数当且仅当时取最大值,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(1)若函数有两个零点,试求的取值范围;

(2)证明

查看答案和解析>>

科目: 来源: 题型:

【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.

(1)若出现故障的机器台数为,求的分布列;

(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?

(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,⊥底面ADDCAP=2,AB=1,E为棱PC的中点.

(1)证明:BEDC

(2)F为棱PC上一点满足BFAC求二面角FABP的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案