相关习题
 0  261307  261315  261321  261325  261331  261333  261337  261343  261345  261351  261357  261361  261363  261367  261373  261375  261381  261385  261387  261391  261393  261397  261399  261401  261402  261403  261405  261406  261407  261409  261411  261415  261417  261421  261423  261427  261433  261435  261441  261445  261447  261451  261457  261463  261465  261471  261475  261477  261483  261487  261493  261501  266669 

科目: 来源: 题型:

【题目】已知函数的定义域为,对于任意的,都有且当时,,若.

(1)求证:为奇函数;

(2)求证: 上的减函数;

(3)求函数在区间[-2,4]上的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

(1)若=10,求yx的函数解析式;

(2)若要求“维修次数不大于的频率不小于0.8,求n的最小值;

(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位,得到的图象关于轴对称,则( )

A. 函数的周期为 B. 函数图象关于点对称

C. 函数图象关于直线对称 D. 函数上单调

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数的图象过点(1,13),且函数对称轴方程为.

(1)求函数的解析式;

(2)设函数,求在区间上的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为五组,整理得到如下的频率分布直方图,则下列说法错误的是

A. 月份人均用电量人数最多的一组有

B. 月份人均用电量不低于度的有

C. 月份人均用电量为

D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为

查看答案和解析>>

科目: 来源: 题型:

【题目】等比数列的定义可用数学符号语言描述为_______,其中,其通项公式_________,______,等比数列中,若_________(),若,则的等比中项为____.

查看答案和解析>>

科目: 来源: 题型:

【题目】等差数列的定义可用数学符号语言描述为________,其中,其通项公式_________,__________=_________,等差数列中,若________()

查看答案和解析>>

科目: 来源: 题型:

【题目】如果有一天我们分居异面直线的两头,那我一定穿越时空的阻隔,画条公垂线向你冲来,一刻也不愿逗留.如图1所示,在梯形中,//,且,分别延长两腰交于点,点为线段上的一点,将沿折起到的位置,使,如图2所示.

(1)求证:

(2)若,四棱锥的体积为,求四棱锥的表面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lganb3=18,b6=12,则数列{bn}的前n项和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,进而求得qa1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.

由题意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,则a1q2=1018,a1q5=1012

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}为正项等比数列,

∴{bn}为等差数列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=∵nN*,故n=1112时,(Snmax=132.

故答案为:C.

【点睛】

这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。

型】单选题
束】
12

【题目】已知数列是递增数列,且对,都有,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案