相关习题
 0  261422  261430  261436  261440  261446  261448  261452  261458  261460  261466  261472  261476  261478  261482  261488  261490  261496  261500  261502  261506  261508  261512  261514  261516  261517  261518  261520  261521  261522  261524  261526  261530  261532  261536  261538  261542  261548  261550  261556  261560  261562  261566  261572  261578  261580  261586  261590  261592  261598  261602  261608  261616  266669 

科目: 来源: 题型:

【题目】是函数)的两个不同的零点,且适当排序后可构成等差数列,也可适当排序后构成等比数列,则________

查看答案和解析>>

科目: 来源: 题型:

【题目】将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有

A. 24种B. 30种C. 32种D. 36种

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某区组织部为了了解全区科级干部“党风廉政知识”的学习情况,按照分层抽样的方法,从全区320名正科级干部和1280名副科级干部中抽取40名科级干部预测全区科级干部“党风廉政知识”的学习情况.现将这40名科级干部分为正科级干部组和副科级干部组,利用同一份试卷分别进行预测.经过预测后,两组各自将预测成绩统计分析如下表:

分组

人数

平均成绩

标准差

正科级干部组

80

6

副科级干部组

70

4

(1)求

(2)求这40名科级干部预测成绩的平均分和标准差

(3)假设该区科级干部的“党风廉政知识”预测成绩服从正态分布,用样本平均数作为的估计值,用样本标准差作为的估计值.利用估计值估计:该区科级干部“党风廉政知识”预测成绩小于60分的约为多少人?

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为是椭圆上在第二象限内的一点,且直线的斜率为.

(1)求点的坐标;

(2)过点作一条斜率为正数的直线与椭圆从左向右依次交于两点,是否存在实数使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)当时,求函数的零点个数;

(2)若,使得,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)若在函数的定义域内存在区间,使得该函数在区间上为减函数,求实数的取值范围

(Ⅱ)当时,若曲线在点处的切线与曲线有且只有一个公共点,求实数的值或取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是

A. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关

B. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关

C. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关

D. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关

查看答案和解析>>

科目: 来源: 题型:

【题目】夏天喝冷饮料已成为年轻人的时尚. 某饮品店购进某种品牌冷饮料若干瓶,再保鲜.

(Ⅰ)饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”(元)与饮品数量(瓶)有关系.之间对应数据如下表:

饮品数量(瓶)

2

4

5

6

8

可变成本(元)

3

4

4

4

5

依据表中的数据,用最小二乘法求出关于的线性回归方程;如果该店购入20瓶该品牌冷饮料,估计“可变成本”约为多少元?

(Ⅱ)该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进).该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:

每日前8个小时

销售量(单位:瓶)

15

16

17

18

19

20

21

频数

10

15

16

16

15

13

15

若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.

(注:利润=销售额购入成本 “可变本成”)

参考公式:回归直线方程为,其中

参考数据:.

查看答案和解析>>

同步练习册答案