科目: 来源: 题型:
【题目】为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租。该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数
的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
查看答案和解析>>
科目: 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.
![]()
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
(系数精确到
);
(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以
(单位:件)表示日销量,
,则每位员工每日奖励100元;
,则每位员工每日奖励150元;
,则每位员工每日奖励200元.现已知该网站6月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)
参考数据:
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:
(1)对于一组数据
,
,
,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
(2)若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校
、
两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差
![]()
①
班数学兴趣小组的平均成绩高于
班的平均成绩
②
班数学兴趣小组的平均成绩高于
班的平均成绩
③
班数学兴趣小组成绩的标准差大于
班成绩的标准差
④
班数学兴趣小组成绩的标准差大于
班成绩的标准差
其中正确结论的编号为( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的多面体中,
平面
,
平面
,
,且
,
是
的中点.
![]()
(1)求证:
;
(2)求平面
与平面
所成的二面角的正弦值;
(3)在棱
上是否存在一点
,使得直线
与平面
所成的角是
. 若存在,指出点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知不等式ax2-5x+b>0的解是-3<x<2,设A={x|bx2-5x+a>0},B={x|
}.
(1)求a,b的值;
(2)求A∩B和A∪(UB).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
查看答案和解析>>
科目: 来源: 题型:
【题目】设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数
(1)证明f(x)在区间(α,β)上是增函数;
(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列叙述中正确的是( )
A. 若
,则“
”的充分条件是“
”
B. 若
,则“
”的充要条件是“
”
C. 命题“
”的否定是“
”
D.
是等比数列,则
是
为单调递减数列的充分条件
查看答案和解析>>
科目: 来源: 题型:
【题目】李冶(1192-1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为
亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:
平方步为
亩,圆周率按
近似计算)
A.
步、
步B.
步、
步C.
步、
步D.
步、
步
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com