科目: 来源: 题型:
【题目】设
是定义在
上的函数,若存在
,使得
在
单调递增,在
上单调递减,则称
为
上的单峰函数,
为峰点,包含峰点的区间称为含峰区间,其含峰区间的长度为:
.
(1)判断下列函数中,哪些是“
上的单峰函数”?若是,指出峰点;若不是,说出原因;
;
(2)若函数
是
上的单峰函数,求实数
的取值范围;
(3)若函数
是区间
上的单峰函数,证明:对于任意的
,若
,则
为含峰区间;若
,则
为含峰区间;试问当
满足何种条件时,所确定的含峰区间的长度不大于0.6.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙二人用4张扑克牌
分别是红桃2,红桃3,红桃4,方片4玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
写出甲、乙二人抽到的牌的所有情况;
甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则乙胜,你认为此约定是否公平?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,河的两岸分别有生活小区
和
,其中
,
三点共线,
与
的延长线交于点
,测得
,
,
,
,
,若以
所在直线分别为
轴建立平面直角坐标系
则河岸
可看成是曲线
(其中
是常数)的一部分,河岸
可看成是直线
(其中
为常数)的一部分.
![]()
(1)求
的值.
(2)现准备建一座桥
,其中
分别在
上,且
,
的横坐标为
.写出桥
的长
关于
的函数关系式
,并标明定义域;当
为何值时,
取到最小值?最小值是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段
后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
![]()
(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数
和方差
,(同一组中的数据用该区间的中点值作代表);
(2)从被抽取的数学成绩是
分以上(包括
分)的学生中选两人,求他们在同一分数段的概率;
(3)假设从全市参加高一年级期末考试的学生中,任意抽取
个学生,设这四个学生中数学成绩为
分以上(包括
分)的人数为
(以该校学生的成绩的频率估计概率),求
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系.若直线
的极坐标方程为
,曲线
的极坐标方程为
,将曲线
上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)已知直线
与曲线
交于
两点,点
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】以
表示值域为
的函数组成的集合,
表示具有如下性质的函数
组成的集合:对于函数
,存在一个正数
,使得函数
的值域包含于区间
。例如,当
,
时,
,
。则下列命题中正确的是:( )
A.设函数
的定义域为
,则“
”的充要条件是“
,
,
”
B.函数
的充要条件是
有最大值和最小值
C.若函数
,
的定义域相同,且
,
,则![]()
D.若函数
有最大值,则![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量
.
(1)求函数f(x)的单调增区间.
(2)若方程
上有解,求实数m的取值范围.
(3)设
,已知区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有100个零点,在所有满足上述条件的[a,b]中求b﹣a的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这些成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组
;第二组
;
;第六组
,并据此绘制了如图所示的频率分布直方图.
求成绩在区间
内的学生人数;
估计这40名学生成绩的众数和中位数.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com