科目: 来源: 题型:
【题目】等差数列的
公差
不为0,
是其前
项和,给出下列命题:
①若
,且
,则
和
都是
中的最大项;
②给定
,对一切
,都有
;
③若
,则
中一定有最小项;
④存在
,使得
和
同号.
其中正确命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率
,
分别是椭圆
的左、右焦点,过
的直线
与
相交于A,B两点,
的周长为
。
(1)求椭圆
的方程;
(2)是否存在直线
使
为直角,若存在求出此时直线
的方程;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】2021年我省将实施新高考,新高考“依据统一高考成绩、高中学业水平考试成绩,参考高中学生综合素质评价信息”进行人才选拔。我校2018级高一年级一个学习兴趣小组进行社会实践活动,决定对某商场销售的商品A进行市场销售量调研,通过对该商品一个阶段的调研得知,发现该商品每日的销售量
(单位:百件)与销售价格
(元/件)近似满足关系式
,其中
为常数
已知销售价格为3元/件时,每日可售出该商品10百件。
(1)求函数
的解析式;
(2)若该商品A的成本为2元/件,根据调研结果请你试确定该商品销售价格的值,使该商场每日销售该商品所获得的利润(单位:百元)最大。
查看答案和解析>>
科目: 来源: 题型:
【题目】(理)某电视台举办的闯关节目共有五关,只有通过五关才能获得奖金,规定前三关若有失败即结束,后两关若有失败再给一次从失败的关开始继续向前闯的机会(后两关总共只有一次机会),已知某人前三关每关通过的概率都是
,后两关每关通过的概率都是
.
(1)求该人获得奖金的概率;
(2)设该人通过的关数为X,求随机变量X的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高 气温 | [10, 15) | [15, 20) | [20, 25) | [25, 30) | [30, 35) | [35, 40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(
+1),且sin B+sin C=
sin A,则a= ( )
A.
B. 2 C. 4 D. ![]()
【答案】B
【解析】
根据正弦定理把
转化为边的关系,进而根据△ABC的周长,联立方程组,可求出a的值.
根据正弦定理,
可化为![]()
∵△ABC的周长为
,
∴联立方程组
,
解得a=2.
故选:B
【点睛】
(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.
(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.
【题型】单选题
【结束】
7
【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
科目: 来源: 题型:
【题目】在海岸
处,发现北偏东
方向,距离
为
海里的
处有一艘走私船,在
处北偏西
方向,距离
为
海里的
处有一艘缉私艇奉命以
海里/时的速度追截走私船,此时,走私船正以
海里/时的速度从
处向北偏东
方向逃窜.
![]()
(1)问
船与
船相距多少海里?
船在
船的什么方向?
(2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为
.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.
(I)求总决赛中获得门票总收入恰好为300万元的概率;
(II)设总决赛中获得门票总收入为X,求X的均值E(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com