相关习题
 0  261777  261785  261791  261795  261801  261803  261807  261813  261815  261821  261827  261831  261833  261837  261843  261845  261851  261855  261857  261861  261863  261867  261869  261871  261872  261873  261875  261876  261877  261879  261881  261885  261887  261891  261893  261897  261903  261905  261911  261915  261917  261921  261927  261933  261935  261941  261945  261947  261953  261957  261963  261971  266669 

科目: 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。

(Ⅰ)写出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】对任意实数abc,给出下列命题:

①“”是“”的充要条件

②“是无理数”是“a是无理数”的充要条件;

③“”是“”的充分不必要条件

④“”是“”的必要不充分条件,

其中真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点轴的平行线交抛物线的准线于,直线交抛物线于点.

(Ⅰ)求抛物线的方程;

(Ⅱ)求证:直线过定点,并求出此定点的坐标.

【答案】I;(II证明见解析.

【解析】试题分析:(Ⅰ)将曲线化为标准方程,可求得的焦点坐标分别为,可得,所以,即抛物线的方程为;(Ⅱ)结合(Ⅰ),可设,得,从而直线的方程为,联立直线与抛物线方程得,解得,直线的方程为,整理得的方程为,此时直线恒过定点.

试题解析:由曲线,化为标准方程可得, 所以曲线是焦点在轴上的双曲线,其中,故的焦点坐标分别为,因为抛物线的焦点坐标为,由题意知,所以,即抛物线的方程为.

)由()知抛物线的准线方程为,设,显然.故,从而直线的方程为,联立直线与抛物线方程得解得

,即时,直线的方程为

,即时,直线的方程为,整理得的方程为,此时直线恒过定点 也在直线的方程为上,故直线的方程恒过定点.

型】解答
束】
21

【题目】已知函数

(Ⅰ)当时,求函数的单调递减区间;

(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;

(Ⅲ)若数列满足 ,记的前项和为,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,平面,以为邻边作平行四边形,连接,若二面角45°.

1)求证:平面⊥平面

2)求直线与平面所成角的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

【答案】I;(II.

【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.

试题解析:(Ⅰ)由,得,即

所以曲线的极坐标方程为

II)将的参数方程代入,得

, 所以,又

所以,且,

所以,

,得,所以.

的取值范围是.

型】解答
束】
23

【题目】已知均为正实数.

(Ⅰ)若,求证:

(Ⅱ)若,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥OABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA2MN分别为OABC的中点.

1)求证:直线MN平面OCD

2)求点B到平面DMN的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】的内角的对边分别为,已知 .

(1)求角

(2)若点满足,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】若长方体的底面是边长为2的正方形,高为4的中点,则(

A.B.平面平面

C.三棱锥的体积为D.三棱锥的外接球的表面积为

查看答案和解析>>

同步练习册答案