科目: 来源: 题型:
【题目】如图为两种商品2019年前三季度销售量的折线统计图,结合统计图,下列说法中正确的有________.
①1~6月,商品的月销售量都超过商品
②7月份商品与商品的销售量相等
③对于商品,7~8月的月销售量增长率与8~9月的月销售量增长率相同
④2019年前三季度商品的销量逐月增长
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高三年级有1000人,某次数学考试不同成绩段的人数.
(1)求该校此次数学考试平均成绩;
(2)计算得分超过141的人数;
(3)甲同学每次数学考试进入年级前100名的概率是,若本学期有4次考试, 表示进入前100名的次数,写出的分布列,并求期望与方差.
查看答案和解析>>
科目: 来源: 题型:
【题目】恩格尔系数(记为)是指居民的食物支出占家庭消费总支出的比重.国际上常用恩格尔系数来衡量一个国家和地区人民生活水平的状况.联合国对消费水平的规定标准如下表:
家庭类型 | 贫穷 | 温饱 | 小康 | 富裕 | 最富裕 |
实施精准扶贫以来,根据对某山区贫困家庭消费支出情况(单位:万元)的抽样调查,2018年每个家庭平均消费支出总额为2万元,其中食物消费支出为1.2万元预测2018年到2020年每个家庭平均消费支出总额每年的增长率约是30%,而食物消费支出平均每年增加0.2万元,预测该山区的家庭2020年将处于( )
A.贫困水平B.温饱水平C.小康水平D.富裕水平
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆方程为,离心率为, 是椭圆的两个焦点, 为椭圆上一点且, 的面积为.
(1)求椭圆的方程;
(2)已知点,直线不经过点且与椭圆交于两点,若直线与直线的斜率之和为1,证明直线过定点,并求出该定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正四棱锥中,底边,侧棱, 为侧棱上的点.
(1)若平面,求二面角的余弦值的大小;
(2)若,侧棱上是否存在一点,使得平面,若存在,求的值;若不存在,试说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(一)在函数图象的学习中常常用到化归转化的思想,往往通过对一些已经学习过的函数图象的研究,进一步迁移到其它函数,例如函数与正弦函数就有密切的联系,因为.只需将在轴下方的图象翻折到上方,就得到的图象.
(二)在研究函数零点问题时,往往会将函数零点问题转化为两个函数图象的交点问题.例如研究函数的零点就可以转化为函数与函数的图象交点来进行处理,通过作图不仅知道函数有且仅有一个零点,还可以确定零点.这体现了化归转化与数形结合的思想在函数研究中的应用.
结合阅读材料回答下面两个问题:
作出函数的图象;
利用作图的方法验证函数有且仅有两个零点.若记两个零点分别为,,证明:.(注:在同一坐标中作图)
查看答案和解析>>
科目: 来源: 题型:
【题目】某营养协会对全市18岁男生的身高作调查,统计显示全市18岁男生的身高服从正态分布,现某校随机抽取了100名18岁男生的身高分析,结果这100名学生的身高全部介于到之间.现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图.
(1)若全市18岁男生共有人,试估计该市身高在以上的18岁男生人数;
(2)求的值,并计算该校18岁男生的身高的中位数(精确到小数点后三位);
(3)若身高以上的学生校服需要单独定制,现从这100名学生中身高在以上的同学中任意抽取3人,这三人中校服需要单独定制的人数记为,求的分布列和期望.
附: ,则;
,则;
,则.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数满足如下条件:
①函数的最小值为,最大值为9;
②且;
③若函数在区间上是单调函数,则的最大值为2.
试探究并解决如下问题:
(Ⅰ)求,并求的值;
(Ⅱ)求函数的图象的对称轴方程;
(Ⅲ)设是函数的零点,求的值的集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com