相关习题
 0  261838  261846  261852  261856  261862  261864  261868  261874  261876  261882  261888  261892  261894  261898  261904  261906  261912  261916  261918  261922  261924  261928  261930  261932  261933  261934  261936  261937  261938  261940  261942  261946  261948  261952  261954  261958  261964  261966  261972  261976  261978  261982  261988  261994  261996  262002  262006  262008  262014  262018  262024  262032  266669 

科目: 来源: 题型:

【题目】已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683.

据此估计,该运动员三次投篮恰有两次命中的概率为

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在R上的函数fx=x3+k-1x2+k+5x-1

1)若k=-5,求fx)的极值;

2)若fx)在区间(03)内单调,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.

(1)求实数的值;

(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C+=1ab0)经过点(1),且焦距为2

1)求椭圆C方程;

2)椭圆C的左,右焦点分别为F1F2,过点F2的直线l与椭圆C交于AB两点,求△F2AB面积S的最大值并求出相应直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率为,直线交椭圆两点,椭圆的右顶点为,且满足.

(1)求椭圆的方程;

(2)若直线与椭圆交于不同两点,且定点满足,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面是菱形,且,其对角线交于点 是棱上的中点.

(1)求证:面

(2)若面底面 ,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EAB的中点,FCC1上,且CF2FC1,点P是侧面AA1D1D(包括边界)上一动点,且PB1∥平面DEF,则tanABP的取值范围为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥ABCD中,BCD是边长为的等边三角形,,二面角ABCD的大小为θ,且,则三棱锥ABCD体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】3月12日,全国政协总工会界别小组会议上,人社部副部长汤涛在回应委员呼声时表示无论是从养老金方面,还是从人力资源的合理配置来说,延迟退休是大势所趋.不过,汤部长也表示,不少职工对于延迟退休有着不同的意见.某高校一社团就是否同意延迟退休的情况随机采访了200名市民,并进行了统计,得到如下的列联表:

赞同延迟退休

不赞同延迟退休

合计

男性

80

20

100

女性

60

40

100

合计

140

60

200

(1)根据上面的列联表判断能否有的把握认为对延迟退休的态度与性别有关;

(2)为了进一步征求对延迟退休的意见和建议,从抽取的200位市民中对不赞同的按照分层抽样的方法抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少有1人为男性的概率.

附: ,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)设函数 为自然对数的底数.当时,若 ,不等式成立,求的最大值.

查看答案和解析>>

同步练习册答案