相关习题
 0  261848  261856  261862  261866  261872  261874  261878  261884  261886  261892  261898  261902  261904  261908  261914  261916  261922  261926  261928  261932  261934  261938  261940  261942  261943  261944  261946  261947  261948  261950  261952  261956  261958  261962  261964  261968  261974  261976  261982  261986  261988  261992  261998  262004  262006  262012  262016  262018  262024  262028  262034  262042  266669 

科目: 来源: 题型:

【题目】在直角梯形中,,如图1.把沿翻折,使得平面平面,如图2

(Ⅰ)求证:

(Ⅱ)若点为线段中点,求点到平面的距离;

(Ⅲ)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在梯形中, , .将沿折起至,使得平面平面(如图2), 为线段上一点.

图1 图2

(Ⅰ)求证:

(Ⅱ)若为线段中点,求多面体与多面体的体积之比;

(Ⅲ)是否存在一点,使得平面?若存在,求的长.若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图的多面体中,EF⊥平面AEBAEEBADEFEFBCBC=2AD=4EF=3AE=BE=2GBC的中点.

(Ⅰ)求证:AB∥平面DEG

(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了配合新冠疫情防控,某市组织了以停课不停学,成长不停歇为主题的空中课堂,为了了解一周内学生的线上学习情况,从该市中抽取1000名学生进行调査,根据所得信息制作了如图所示的频率分布直方图.

1)为了估计从该市任意抽取的3名同学中恰有2人线上学习时间在[200,300)的概率,特设计如下随机模拟的方法:先由计算器产生09之间取整数值的随机数,依次用0,1,2,3…9的前若干个数字表示线上学习时间在[200,300)的同学,剩余的数字表示线上学习时间不在[200,300)的同学;再以每三个随机数为一组,代表线上学习的情况.

假设用上述随机模拟方法已产生了表中的30组随机数,请根据这批随机数估计概率的值;

907 966 191 925 271 569 812 458 932 683 431 257 027 556

438 873 730 113 669 206 232 433 474 537 679 138 602 231

2)为了进一步进行调查,用分层抽样的方法从这1000名学生中抽出20名同学,在抽取的20人中,再从线上学习时间[350,450)(350分钟至450分钟之间)的同学中任意选择两名,求这两名同学来自同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】济南市某中学高三年级有1000名学生参加学情调研测试,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.

1)求第四个小矩形的高,并估计本校在这次统测中数学成绩不低于120分的人数和这1000名学生的数学平均分;

2)已知样本中,成绩在[140150]内的有2名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求选取的两人中至少有一名女生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】设点所在平面内一点,下列说法正确的是(

A.,则的形状为等边三角形

B.,则点是边的中点

C.任作一条直线,再分别过顶点的垂线,垂足分别为,若恒成立,则点的垂心

D.则点在边的延长线上

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表,某同学根据表中数据分析得出的结论正确的是(

班级

参加人数

中位数

方差

平均数

55

149

191

135

55

151

110

135

A.甲、乙两班学生成绩的平均数相同

B.甲班的成绩波动比乙班的成绩波动大

C.乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)

D.甲班成绩的众数小于乙班成绩的众数

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)用五点法作函数的图象;

2)说出此图象是由的图象经过怎样的变化得到的;

3)求此函数的对称轴、对称中心、单调递增区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形为菱形 平面 中点.

(1)求证: ∥平面

(2)求证:

(3)若为线段上的点,当三棱锥的体积为时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(Ⅰ)设命题实数满足,其中,命题实数满足.若的充分不必要条件,求实数的取值范围.

(Ⅱ)已知命题方程表示焦点在x轴上双曲线;命题空间向量的夹角为锐角,如果命题“”为真,命题“”为假.求的取值范围;

查看答案和解析>>

同步练习册答案