科目: 来源: 题型:
【题目】若对任意的正整数,总存在正整数,使得数列的前项和,则称是“回归数列”.
()①前项和为的数列是否是“回归数列”?并请说明理由.②通项公式为的数列是否是“回归数列”?并请说明理由;
()设是等差数列,首项,公差,若是“回归数列”,求的值.
()是否对任意的等差数列,总存在两个“回归数列”和,使得成立,请给出你的结论,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】从装有个红球和个黒球的口袋内任取个球,则互为对立事件是( )
A. 至少有一个黒球与都是黒球B. 至少有一个黒球与都是红球
C. 至少有一个黒球与至少有个红球D. 恰有个黒球与恰有个黒球
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是( )
①;②;
③与平面所成的角为;
④四面体的体积为.
A.个B.个C.个D.个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,半圆的直径,为圆心,,为半圆上的点.
(Ⅰ)请你为点确定位置,使的周长最大,并说明理由;
(Ⅱ)已知,设,当为何值时,
(ⅰ)四边形的周长最大,最大值是多少?
(ⅱ)四边形的面积最大,最大值是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题16分)某乡镇为了进行美丽乡村建设,规划在长为10千米的河流OC的一侧建一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数,(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段BC,如图所示.
(1)求曲线段OABC对应的函数的解析式;
(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQ,QP, PN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com