相关习题
 0  262459  262467  262473  262477  262483  262485  262489  262495  262497  262503  262509  262513  262515  262519  262525  262527  262533  262537  262539  262543  262545  262549  262551  262553  262554  262555  262557  262558  262559  262561  262563  262567  262569  262573  262575  262579  262585  262587  262593  262597  262599  262603  262609  262615  262617  262623  262627  262629  262635  262639  262645  262653  266669 

科目: 来源: 题型:

【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足

1)将利润表示为产量万台的函数;

2)当产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线为参数),直为参数),以为极点,轴正半轴为极轴建立极坐标系.

(1)求的极坐标方程;

(2)当时,直线相交于两点;过点的垂线与曲线的另一个交点为,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某糕点房推出一类新品蛋糕,该蛋糕的成本价为4元,售价为8元.受保质期的影响,当天没有销售完的部分只能销毁.经过长期的调研,统计了一下该新品的日需求量.现将近期一个月(30天)的需求量展示如下:

日需求量x

20

30

40

50

天数

5

10

10

5

(1)从这30天中任取两天,求两天的日需求量均为40个的概率.

(2)以上表中的频率作为概率,列出日需求量的分布列,并求该月的日需求量的期望.

(3)根据(2)中的分布列求得当该糕点房一天制作35个该类蛋糕时,对应的利润的期望值为;现有员工建议扩大生产一天45个,求利用利润的期望值判断此建议该不该被采纳.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,,且

为等边三角形,平面平面;点分别为的中点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x(千部)手机,需另投入成本万元,且,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.

)求出2020年的利润(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本);

2020年产量x为多少(千部)时,企业所获利润最大?最大利润是多少?

(说明:当时,函数单调递减,在单调递增)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若,求函数的最小值;

2)若对于任意恒成立,求的取值范围;

3)若,求函数的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了201950位农民的年收入并制成如下频率分布直方图:

1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得,利用该正态分布,求:

i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附参考数据:,若随机变量X服从正态分布,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.

1)求椭圆的方程;

2)矩形轴右侧,且顶点在直线上,顶点在椭圆上,若矩形的面积为,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点为抛物线上的两点,为坐标原点,且,则的面积的最小值为( )

A. 16 B. 8 C. 4 D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为.

1)求这一技术难题被攻克的概率;

2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。(本题满分12分)

查看答案和解析>>

同步练习册答案