科目: 来源: 题型:
【题目】如图,椭圆:的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为6,离心率为,
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于两点,问在轴上是否存在定点,使得为定值?证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,点,点.已知抛物线(是常数),顶点为.
(1)当抛物线经过点时,求顶点的坐标;
(2)若点在轴下方,当时,求抛物线的解析式;
(3)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为.
(1)如图①,当点落在边上时,求点的坐标;
(2)如图②,当点落在线段上时,与交于点.
①求证;②求点的坐标.
(3)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点、,点是圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线.且直线交曲线于两点(点在轴的上方).
(1)求曲线的方程;
(2)试判断直线与曲线的另一交点是否与点关于轴对称?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,是南北方向的一条公路,是北偏东方向的一条公路,某风景区的一段边界为曲线.为方便游客光,拟过曲线上的某点分别修建与公路,垂直的两条道路,,且,的造价分别为5万元百米,40万元百米,建立如图所示的直角坐标系,则曲线符合函数模型,设,修建两条道路,的总造价为万元,题中所涉及的长度单位均为百米.
(1)求解析式;
(2)当为多少时,总造价最低?并求出最低造价.
查看答案和解析>>
科目: 来源: 题型:
【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)
年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 10 | 30 | 30 | 20 | 5 | 5 |
赞成人数 | 8 | 25 | 24 | 10 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的2×2列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
若从年龄在[55,65),[65,75)的别调查的人中各随机选取两人进行追踪调查,记选中的4人中赞成“使用微信交流”的人数为X,求随机变量X的分布列及数学期望.
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:K2=,其中n=a+b+c+d.
查看答案和解析>>
科目: 来源: 题型:
【题目】某养鸡场有2500只鸡准备对外出售从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②请根据相关信息,解答下列问题:
(1)图①中的值为___________;
(2)统计这组数据的平均数众数和中位数;
(3)根据样本数据,估计这2500只鸡中,质量为的约有多少只?
查看答案和解析>>
科目: 来源: 题型:
【题目】有一段“三段论”,其推理是这样的:对于可导函数,若,则是函数的极值点,因为函数满足,所以是函数的极值点”,结论以上推理
A. 大前提错误B. 小前提错误C. 推理形式错误D. 没有错误
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线(为常数,)经过点,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com