科目: 来源: 题型:
【题目】如图,圆:.
(Ⅰ)若圆C与x轴相切,求圆C的方程;
(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知, 为两条不同的直线, , 为两个不同的平面,对于下列四个命题:
①, , , ②,
③, , ④,
其中正确命题的个数有( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四棱锥中,底面为矩形,且,,若平面,,分别是线段,的中点.
(1)证明:;
(2)在线段上是否存在点,使得平面?若存在,确定点的位置:若不存在,说明理由;
(3)若与平面所成的角为45°,求二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).
(1)若点M,N到直线l的距离相等,求实数k的值;
(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于定义在上的函数,若存在实数及、()使得对于任意 都有成立,则称函数是带状函数;若存在最小值,则称为带宽.
(1)判断函数 是不是带状函数?如果是,指出带宽(不用证明);如果不是,请说明理由;
(2)求证:函数()是带状函数;
(3)求证:函数是带状函数的充要条件是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com