科目: 来源: 题型:
【题目】在竖直坐标平面中,从坐标原点出发以同一初速度和不同的发射角(即发射方向与轴正向之间的夹角)射出的质点(不计质点的大小),在重力(设重力加速度为)的作用下运动轨迹是抛物线,所有这些抛物线组成一个抛物线族(即抛物线的集合).若两条抛物线在同一个交点处的切线互相垂直,则称这个交点为正交点.证明:此抛物线族的所有正交点的集合是一段椭圆弧,并求出这个椭圆弧的方程(包括变量的取值范围),再画出它的草图.注. 抛物线在其上的点处的切线的斜率为.
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学在研究函数时,给出下面几个结论:
①等式对恒成立;
②函数的值域为;
③若,则一定;
④对任意的,若函数恒成立,则当时,或.
其中正确的结论是____________(写出所有正确结论的序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为3.5万元,每件珠宝售价(万元)与加工时间(单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间(天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.
(1)如果每件珠宝加工天数分别为6,12,预计销量分别会有多少件?
(2)设工厂生产这批珠宝产生的纯利润为(万元),请写出纯利润(万元)关于加工时间(天)之间的函数关系式,并求纯利润(万元)最大时的预计销量.
注:毛利润=总销售额-原材料成本,纯利润=毛利润-工人报酬
查看答案和解析>>
科目: 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:厘米)满足关系:.若不建隔热层,每年的能源消耗费用为万元.设为隔热层建造费用与年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用最小,并求其最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.
(Ⅰ)若点的坐标为,求的值;
(Ⅱ)若点为线性约束条件所围成的平面区域上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中正确的是( )
A. 命题:,,则命题:,
B. “”是“”的充要条件
C. 命题“若,则或”的逆否命题是“若或,则”
D. 命题:,;命题:对,总有;则是真命题
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,射线和均为笔直的公路,扇形区域(含边界)是规划的生态文旅园区,其中、分别在射线和上.经测量得,扇形的圆心角(即)为、半径为千米.根据发展规划,要在扇形区域外修建一条公路,分别与射线、交于、两点,并要求与扇形弧相切于点(不与重合).设(单位:弧度),假设所有公路的宽度均忽略不计.
(1)试将公路的长度表示为的函数;
(2)已知公路每千米的造价为万元,问建造这样一条公路,至少要投入多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com