科目: 来源: 题型:
【题目】(本小题满分14分)如图,在边长为
的菱形
中,
,点
,
分别是边
,
的中点,
.沿
将△
翻折到△
,连接
,得到如图的五棱锥
,且
.
![]()
(1)求证:
平面
;
(2)求四棱锥
的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆
与
轴交于
、
两点,动直线
(
)与
轴、
轴分别交于点
、
,与圆交于
、
两点(点
纵坐标大于点
纵坐标).
![]()
(1)若
,点
与点
重合,求点
的坐标;
(2)若
,
,求直线
将圆分成的劣弧与优弧之比;
(3)若
,设直线
、
的斜率分别为
、
,是否存在实数
使得
?若存在,求出
的值,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(Ⅰ)将曲线
的极坐标方程化为直角坐标方程;
(Ⅱ)若直线
与曲线
相交于
,
两点,且
,求直线
的倾斜角
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,P为椭圆C上一点,且PF2垂直于x轴,连结PF1并延长交椭圆于另一点Q,设
=λ
.
![]()
(1)若点P的坐标为(2,3),求椭圆C的方程及λ的值;
(2)若4≤λ≤5,求椭圆C的离心率的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】对称轴为坐标轴的椭圆
的焦点为
,
,
在
上.
(1)求椭圆
的方程;
(2)设不过原点
的直线
与椭圆
交于
,
两点,且直线
,
,
的斜率依次成等比数列,则当
的面积为
时,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】为全面贯彻党的教育方针,坚持立德树人,适应经济社会发展对多样化高素质人才的需要,按照国家统一部署,湖南省高考改革方案从2018年秋季进入高一年级的学生开始正式实施.新高考改革中,明确高考考试科目由语文、数学、英语
科,及考生在思想政治、历史、地理、物理、化学、生物
个科目中自主选择的
科组成,不分文理科.假设
个自主选择的科目中每科被选择的可能性相等,每位学生选择每个科目互不影响,甲、乙、丙为某中学高一年级的
名学生.
(1)求这
名学生都选择了物理的概率.
(2)设
为这
名学生中选择物理的人数,求
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,公路
围成的是一块顶角为
的角形耕地,其中
,在该块土地中
处有一小型建筑,经测量,它到公路
的距离分别为
,现要过点
修建一条直线公路
,将三条公路围成的区域
建成一个工业园.
![]()
(1)以
为坐标原点建立适当的平面直角坐标系,并求出
点的坐标;
(2)三条公路围成的工业园区
的面积恰为
,求公路
所在直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com