科目: 来源: 题型:
【题目】如图,在四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.
(Ⅰ)求证:MN∥平面ABCD;
(Ⅱ)求二面角D1-AC-B1的正弦值;
(Ⅲ)设E为棱A1B1上的点.若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:y2=2x的焦点为F,过焦点F的直线交抛物线于A,B两点,过A,B作准线的垂线交准线与P,Q两点.R是PQ的中点.
(1)证明:以PQ为直径的圆恒过定点F.
(2)证明:AR∥FQ.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项等比数列的前项和为,且,。数列的前项和为,且。
(1)求数列的通项公式及其前项和;
(2)证明数列为等差数列,并求出的通项公式;
(3)设数列,问是否存在正整数 ,使得成等差数列,若存在,求出所有满足要求的;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产产品的年固定成本为250万元,每生产千件需另投人成本万元.当年产量不足80千件时,(万元);当年产量不小于80千件时,万元,每千件产品的售价为50万元,该厂生产的产品能全部售完.
(1)写出年利润万元关于千件的函数关系式;
(2)当年产量为多少千件时该厂当年的利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质”
(1)判断函数是否具有“性质”,若具有“性质”,则求出的值;若不具有“性质”,请说明理由;
(2)已知函数具有“性质”且函数在上的最小值为;当时,,求函数在区间上的值域;
(3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数,在恰好存在个零点,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线C1的渐近线是x±2y=0,焦点坐标是F1(-,0)、F2(,0).
(1)求双曲线C1的方程;
(2)若椭圆C2与双曲线C1有公共的焦点,且它们的离心率之和为,点P在椭圆C2上,且|PF1|=4,求∠F1PF2的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,(为常数)
(1)若
①求函数在区间上的最大值及最小值。
②若过点可作函数的三条不同的切线,求实数的取值范围。
(2)当时,不等式恒成立,求的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】某海警基地码头的正西方向海里处有海礁界碑,过点且与成角(即北偏东)的直线为此处的一段领海与公海的分界线(如图所示)。在码头的正西方向且距离点海里的领海海面处有一艘可疑船停留,基地指挥部决定在测定可疑船的行驶方向后,海警巡逻艇从处即刻出发。若巡逻艇以可疑船的航速的倍前去拦截,假定巡逻艇和可疑船在拦截过程中均未改变航向航速,将在点处截获可疑船。
(1)若可疑船的航速为海里小时,,且可疑船沿北偏西的方向朝公海逃跑,求巡逻艇成功拦截可疑船所用的时间。
(2)若要确保在领海内(包括分界线)成功拦截可疑船,求的最小值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题p:x∈(-2,1),使等式x2-x-m=0成立,命题q:表示椭圆.
(1)若命题p为真命题,求实数m的取值范围.
(2)判断命题p为真命题是命题q为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com