科目: 来源: 题型:
【题目】已知梯形中,,,是的中点.,、分别是、上的动点,且,设(),沿将梯形翻折,使平面平面,如图.
(1)当时,求证:;
(2)若以、、、为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,,分别为的中点,点在线段上.
(Ⅰ)求证:平面;
(Ⅱ)若为的中点,求证:平面;
(Ⅲ)当时,求四棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下 | 60~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班/人数 | 3 | 6 | 11 | 18 | 12 |
乙班/人数 | 4 | 8 | 13 | 15 | 10 |
现规定平均成绩在80分以上(不含80分)的为优秀.参考公式及数据:.
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)试分别估计两个班级的优秀率;
(2)由以上统计数据填写下面列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | |||
总计 |
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业三月中旬生产,,三种产品共3000件,根据分层随机抽样的结果,企业统计员制作了如下的统计表格:
产品类别 | |||
产品数量 | 1300 | ||
样本中的数量 | 130 |
由于不小心,表格中,产品的有关数据已被污染得看不清楚,统计员只记得样本中产品的数量比样本中产品的数量多10.根据以上信息,求该企业生产产品的数量.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个地区共有5个乡镇,共30万人,其人口比例为3∶2∶5∶2∶3,从这30万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某集团公司计划从甲分公司中的3位员工、、和乙分公司中的3位员工、、选择2位员工去国外工作.
(1)若从这6名员工中任选2名,求这2名员工都是甲分公司的概率;
(2)若从甲分公司和乙分公司中各任选1名员工,求这2名员工包括但不包括的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】从某学校高三年级共800名男生中随机抽取50名学生作为样本测量身高.测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组;第二组;…;第八组.下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组与第八组人数之和为第七组的两倍.
(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)求第六组和第七组的频率并补充完整频率分布直方图.
查看答案和解析>>
科目: 来源: 题型:
【题目】从代号为A、B、C、D、E的5个人中任选2人
(1)列出所有可能的结果;
(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=1-(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求a的值;
(2)证明:函数f(x)在定义域(-∞,+∞)内是增函数;
(3)当x∈(0,1]时,tf(x)≥2x-2恒成立,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com