科目: 来源: 题型:
【题目】如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,
,
,
.
(1)当
时,求
的大小;
(2)求
的面积S的最小值及使得S取最小值时
的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
的定义域为
,对于区间
,若
满足
,则称区间
为函数
的
区间.
(1)证明:区间
是函数
的
区间;
(2)若区间
是函数
的
区间,求实数
的取值范围;
(3)已知函数
在区间
上的图象连续不断,且在
上仅有
个零点,证明:区间
不是函数
的
区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数![]()
在
上的最大值为
,
.
(1)若点
在
的图象上,求函数
图象的对称中心;
(2)将函数
的图象向右平移
个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的
,得函数
的图象,若
在
上为增函数,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为
,命中一次得3分;命中乙靶的概率为
,命中一次得2分,若没有命中则得0分,用随机变量
表示该射手一次测试累计得分,如果
的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。
(1)如果该射手选择方案1,求其测试结束后所得分
的分布列和数学期望E
;
(2)该射手选择哪种方案通过测试的可能性大?请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
![]()
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 3 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.(参考公式:
)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x3﹣ax2+bx+c(a,b,c∈R).
(1)若函数f(x)在x=﹣1和x=3处取得极值,试求a,b的值;
(2)在(1)的条件下,当x∈[﹣2,6]时,f(x)<2|c|恒成立,求c的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):
![]()
(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;
(2)设该城市郊区和城区的居民户数比为
,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com