科目: 来源: 题型:
【题目】已知O为坐标原点,对于函数
,称向量
为函数
的伴随向量,同时称函数
为向量
的伴随函数.
(1)设函数
,试求
的伴随向量
;
(2)记向量
的伴随函数为
,求当
且
时
的值;
(3)由(1)中函数
的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移
个单位长度得到
的图象,已知
,
,问在
的图象上是否存在一点P,使得
.若存在,求出P点坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),圆
与圆
外切于原点
,且两圆圆心的距离
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
和圆
的极坐标方程;
(2)过点
的直线
,
与圆
异于点
的交点分别为点
,
,与圆
异于点
的交点分别为点
,
,且
,求四边形面积
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了提高学生的身体素质,某校高一、高二两个年级共
名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取
名和
名学生进行测试.下表是高二年级的
名学生的测试数据(单位:个/分钟):
学生编号 | 1 | 2 | 3 | 4 | 5 |
跳绳个数 | 179 | 181 | 168 | 177 | 183 |
踢毽个数 | 85 | 78 | 79 | 72 | 80 |
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳
个/分钟,踢毽
个/分钟.当
,且
时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述
名学生中,随机抽取
人,求抽取的
名学生中为“span>运动达人”的人数
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过
的包裹收费
元;重量超过
的包裹,除
收费
元之外,超过
的部分,每超出
(不足
,按
计算)需再收
元.
该公司将近
天,每天揽件数量统计如下:
包裹件数范围 |
|
|
|
|
|
包裹件数 (近似处理) |
|
|
|
|
|
天数 |
|
|
|
|
|
(1)某人打算将
,
,
三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过
元的概率;
(2)该公司从收取的每件快递的费用中抽取
元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过
件,工资
元,目前前台有工作人员
人,那么,公司将前台工作人员裁员
人对提高公司利润是否更有利?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线
:
的左、右焦点分别为
,
为坐标原点,
是双曲线上在第一象限内的点,直线
分别交双曲线
左、右支于另一点
,
,且
,则双曲线
的离心率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
关于直线
对称的圆为
.
(1)求圆
的方程;
(2)过点
作直线
与圆
交于
两点,
是坐标原点,是否存在这样的直线
,使得在平行四边形
中
?若存在,求出所有满足条件的直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com