科目: 来源: 题型:
【题目】(本小题满分13分)
某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准
(I)已知甲厂产品的等级系数X1的概率分布列如下所示:
![]()
且X1的数字期望EX1=6,求a,b的值;
(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.
在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注:(1)产品的“性价比”=
;
(2)“性价比”大的产品更具可购买性.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.
(1)求抛物线方程;
(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】以下有关命题的说法错误的是( )
A.命题“若
,则
”的逆否命题为“若
,则
”
B.“
”是“
”成立的必要不充分条件
C.对于命题
,使得
,则
,均有![]()
D.若
为真命题,则
与
至少有一个为真命题
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
(
,且
)是定义域为R的奇函数.
(1)求t的值;
(2)若
,求使不等式
对一切
恒成立的实数k的取值范围;
(3)若函数
的图象过点
,是否存在正数m(
),使函数
在
上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在R上的偶函数f(x),其导函数
,当x≥0时,恒有![]()
+f(﹣x)<0,若g(x)=x2f(x),则不等式g(x)<g(1﹣2x)的解集为( )
A.(
,1)B.(﹣∞,
)∪(1,+∞)
C.(
,+∞)D.(﹣∞,
)
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学回答“用数学归纳法的证明
(n∈N*)”的过程如下:
证明:①当n=1时,显然命题是正确的.②假设当n=k(k≥1,k∈N*)时,有
,那么当n=k+1时,
,所以当n=k+1时命题是正确的,由①②可知对于n∈N*,命题都是正确的,以上证法是错误的,错误在于( )
A.从k到k+1的推理过程没有使用归纳假设
B.假设的写法不正确
C.从k到k+1的推理不严密
D.当n=1时,验证过程不具体
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com