科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
:
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设点
的直角坐标为
,直线
与曲线
的交点为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆
:
的左、右焦点分别为
,
轴,直线
交
轴于
点,
,
为椭圆
上的动点,
的面积的最大值为1.
![]()
(1)求椭圆
的方程;
(2)过点
作两条直线与椭圆
分别交于
且使
轴,如图,问四边形
的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
第一种生产方式 | 第二种生产方式 | |||||||||||||||||||
8 | 6 | 5 | 5 | 6 | 8 | 9 | ||||||||||||||
9 | 7 | 6 | 2 | 7 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 8 | ||||||
9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 8 | 1 | 4 | 4 | 5 | ||||||
2 | 1 | 1 | 0 | 0 | 9 | 0 | ||||||||||||||
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m | 不超过m | 总计 | |
第一种生产方式 | |||
第二种生产方式 | |||
总计 |
(3)根据(2)中的列表,能否有99%的把握认为两种生产方式的效率有差异?
附:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市对创“市级示范性学校”的甲、乙两所学校进行复查验收,对办学的社会满意度一项评价随机访问了20为市民,这20位市民对这两所学校的评分(评分越高表明市民的评价越好)的数据如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
检查组将成绩分成了四个等级:成绩在区间
的为
等,在区间
的为
等,在区间
的为
等,在区间
为
等.
![]()
(1)请用茎叶图表示上面的数据,并通过观察茎叶图,对两所学校办学的社会满意度进行比较,写出两个统计结论;
(2)估计哪所学校的市民的评分等级为
级或
级的概率大,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
-x2+ef′(
)x.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在x1,x2(x1<x2),使得f(x1)+f(x2)=1,求证:x1+x2<2.
查看答案和解析>>
科目: 来源: 题型:
【题目】某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。
(1)求甲选手能晋级的概率;
(2)若乙选手每题能答对的概率都是
,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,且椭圆
的一个顶点与抛物线
的焦点重合,离心率为
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
且斜率存在的直线
交椭圆
于
两点,线段
的垂直平分线交
轴于
点,证明:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形
是边长为
的正方形,
为
的中点,以
为折痕把
折起,使点
到达点
的位置,且二面角
为直二面角,连结
.
![]()
(1)记平面
与平面
相较于
,在图中作出
,并说明画法;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com