相关习题
 0  263319  263327  263333  263337  263343  263345  263349  263355  263357  263363  263369  263373  263375  263379  263385  263387  263393  263397  263399  263403  263405  263409  263411  263413  263414  263415  263417  263418  263419  263421  263423  263427  263429  263433  263435  263439  263445  263447  263453  263457  263459  263463  263469  263475  263477  263483  263487  263489  263495  263499  263505  263513  266669 

科目: 来源: 题型:

【题目】已知函数,其中为自然对数的底数,则函数

的零点个数为( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】为增强学生体质,合肥一中组织体育社团,某班级有4人积极报名参加篮球和足球社团,每人只能从两个社团中选择其中一个社团,大家约定:每个人通过掷一枚质地均匀的骰子决定自己参加哪个社团,掷出点数为56的人参加篮球社团,掷出点数小于5的人参加足球社团.

1)求这4人中恰有1人参加篮球社团的概率;

2)用分别表示这4人中参加篮球社团和足球社团的人数,记随机变量X之差的绝对值,求随机变量X的分布列与数学期望

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆)的左焦点为,点为椭圆上任意一点,且的最小值为,离心率为.

(1)求椭圆的方程;

(2)设O为坐标原点,若动直线与椭圆交于不同两点都在轴上方),且.

(i)当为椭圆与轴正半轴的交点时,求直线的方程;

(ii)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某面包店推出一款新面包,每个面包的成本价为元,售价为元,该款面包当天只出一炉(一炉至少个,至多个),当天如果没有售完,剩余的面包以每个元的价格处理掉,为了确定这一炉面包的个数,以便利润最大化,该店记录了这款新面包最近天的日需求量(单位:个),整理得下表:

日需求量

频数

(1)根据表中数据可知,频数与日需求量(单位:个)线性相关,求关于的线性回归方程;

(2)若该店这款新面包每日出炉数设定为

(i)求日需求量为个时的当日利润;

(ii)求这天的日均利润.

相关公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】在区间内随机取两个数分别记为,则使得函数有零点的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布

1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;

22020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.

附:若随机变量,则;

对于一组数据,其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两人组成星队参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则星队3分;如果只有一个人猜对,则星队1分;如果两人都没猜对,则星队0分。已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响。各轮结果亦互不影响。假设星队参加两轮活动,求:

星队至少猜对3个成语的概率;

星队两轮得分之和为X的分布列和数学期望EX

查看答案和解析>>

同步练习册答案