科目: 来源: 题型:
【题目】设n为一个正整数,三维空间内的点集S满足下述性质:
(1).空间内不存在n个平面,使得点集S中的每个点至少在这n个平面中的一个平面上;
(2).对于每个点
,均存在n个平面,使得
中的每个点均至少在这n个平面中的一个平面上.
求点集S中点的个数的最小值与最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
经过点
,且离心率为
,过其右焦点F的直线
交椭圆C于M,N两点,交y轴于E点.若
,
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)试判断
是否是定值.若是定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系
中,直线
(
为参数),以原点为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程及曲线
的直角坐标方程;
(2)设点
直角坐标为
,直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在边长为
的菱形
中,
,
与
交于点
,将
沿直线
折起到
的位置(点
不与
,
两点重合).
![]()
(1)求证:不论
折起到何位置,都有
平面
;
(2)当
平面
时,点
是线段
上的一个动点,若
与平面
所成的角为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】 2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占
,而男生有10人表示对冰球运动没有兴趣.
(1)完成下面的
列联表,并回答能否在犯错误的概率不超过0.1的前提下认为“对冰球是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男 | 55 | ||
女 | |||
合计 |
(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为
,若每次抽取的结果是相互独立的,求
的分布列、期望和方差.
附表:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072/p> | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某班制定了数学学习方案:星期一和星期日分别解决
个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有( )
A.
种 B.
种 C.
种 D.
种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com